Data Structures and
Algorithms

Lecture 2

Ryan Cory-Wright
r.cory-wright@imperial.ac.uk

A Brief Statement on The Difficulty of This Class

» Python is not a prerequisite
« If you have coded before, you will have a head start

« If you haven't, that’s totally fine—this class is designed to get you
there, and the tutorials + exercises are where most of the
learning happens

2/28

Today: What You Should be Able to do

By the end of today, you should be able to:

+ Explain what a function is (inputs — outputs) and why we use
them.

+ Write a simple function with a return statement.

» Describe an algorithm as step-by-step instructions for turning
input into output.

* Implement an algorithm in Python and sanity-check it on small
examples.

Note: you will learn some of this in the coding part of the lecture.

3/28

Today

1. Recap
2. Functions
3. Afirst algorithm

4/28

What is the output?

x =5
6 =y
print (x)
print (y)

A.5,then 6
B.5,then 5
C.6,then6
D. An error

E. | don’t know

5/28

What is the output?

A. 2,then 2
B. 2, then 5
C. 5, then2
D.5,then5

E. I don’t know

6/28

What is the output?

x =5
if x >= 0:
print (1)
elif x < 20:
print (2)
else:
print (3)
print (4)

A. 1, then 2, then 4
B. 1,then 4

C.4

D. 3,then 4

E. | don’t know

7/28

2

What is the output?

x = 3
while x > 0:
print (x)

x = x — 1

A 3,21
B.3,2,1,0
C.3,2
D.2,1,0

E. I don’t know

8/28

2

What is the output?

X = 3
while x > 0:
x = x — 1

print (x)

A.3,2,1
B.2,1,0
C.1
D.0

E. | don’t know

9/28

Today

1. Recap

2. Functions

3. A first algorithm
4. Homework 1

10/28

L2 T S S C R

We have already been using functions

In Session 1, we used built-in functions:

>>> abs (-3)

3

>>> max (5, 3, 10)
10

>>> max (abs (-5), min (3, 9))

We say we call the function, specifying the arguments within
parentheses.

What happens when we do this, and why are functions useful?

11/28

We use functions to organise tasks

A function is a named group of statements to perform a specific task.
* Input data — function — output data

12/28

We use functions to organise tasks

A function is a named group of statements to perform a specific task.
* Input data — function — output data

Let's define a function abs_value
def abs_value(a):
if a < 0:

return -a # The return statement stops function execution, outputs -a
else:
return a
T ~tion call r the code block inside abs_value for a = -3
The re ned value is assigned to the variable y

y = abs_value (-3)

A function is like a factory: in goes input data (car parts), out comes
output data (car).

A function may have multiple parameters separated by commas. It
may return multiple values separated by commas.
12/28

Why functions?

1. Abstraction: user does not need to know what happens inside

2. Make code easily re-usable and modular

3. Changing code becomes easier: we don’t have to copy same
code in many places
» Best practice: If you ever find yourself copy-pasting code, stop and
write a function instead.
« Otherwise, you might fix a bug in one part of code and forget to fix
it elsewhere.

13/28

1

1

2

3

A Reliable Pattern for Writing Functions

Step 1: What are the Inputs/Outputs? What goes in? What comes
out? Any assumptions?
Step 2: Write down the function

def is_even(n: int) —-> bool:
"""Return True iff n is an even integer."""
return (n % 2) == 0

Step 3: Test on small instances immediately.

assert is_even(0) is True
assert is_even(l) is False
assert is_even(10) is True

14/28

Today

1. Recap
2. Functions
3. A first algorithm

15/28

Solving computational problems

Data = digitised information

e D

Data structures describe ways to organise data

Algorithms describe how we process data:
 Step-by-step instructions
 Take input data and produce output data

We write algorithms into programs (eg in Python)

Computers interpret and execute programs

16/28

An algorithm is a recipe

oy I
I e
=R | |

3T S

17/28

An algorithm is a recipe

Algorithm:
 Step-by-step instructions
* Takes input (data) and produces output (data)

Pics: Hungry Gals, IKEA. 17/28

How do you calculate a square root?

The square root of a number x is a number y such that
y x y = x (let’s focus on positive roots)

18/28

How do you calculate a square root?

The square root of a number x is a number y such that
y x y = x (let’s focus on positive roots)

25 5

\ /

square_root

(function)

10 277

18/28

How do you calculate a square root?

The square root of a number x is a number y such that
y x y = x (let’s focus on positive roots)

25 5

\ /

square_root

(function)

10 277

A function is like a factory
* In goes number, out comes square root
* Inside the factory, there’s an algorithm

18/28

Square-root algorithm

The square root of x is y suchthat y x y = x

Algorithm (Heron of Alexandria, first century AD):
+ Make a guess, for example x/2

19/28

Square-root algorithm

The square root of x is y suchthat y x y = x

Algorithm (Heron of Alexandria, first century AD):
+ Make a guess, for example x/2
* Repeat three times:

19/28

Square-root algorithm

The square root of x is y suchthat y x y = x

Algorithm (Heron of Alexandria, first century AD):
+ Make a guess, for example x/2

* Repeat three times:
 Divide the original number x by the guess to get a ratio

19/28

Square-root algorithm

The square root of x is y suchthat y x y = x

Algorithm (Heron of Alexandria, first century AD):
+ Make a guess, for example x/2

* Repeat three times:

 Divide the original number x by the guess to get a ratio
 Find the average of the guess and the ratio

19/28

Square-root algorithm

The square root of x is y suchthat y x y = x

Algorithm (Heron of Alexandria, first century AD):
+ Make a guess, for example x/2

* Repeat three times:

 Divide the original number x by the guess to get a ratio
 Find the average of the guess and the ratio
» Use this average as the next guess

19/28

Square-root algorithm

The square root of x is y suchthat y x y = x

Algorithm (Heron of Alexandria, first century AD):
+ Make a guess, for example x/2
* Repeat three times:

 Divide the original number x by the guess to get a ratio
 Find the average of the guess and the ratio
» Use this average as the next guess

X g g*g x/g (g+x/9)/2
10 5 25 2 3.5

10 3.5 1225 2.857 3.179
10 3.179 10.103 Close enough!

Il
W =

19/28

Let’s use Python

20/28

© ® N G kR W N e

Square-root function

def

square_root (x) :

guess = x/2

eps = 0.01

while abs (guess*guess—x) >= eps:
guess = (guess + x/guess) /2

return guess

20
square_root (z)

21/28

© ® N G kR W N e

Square-root function

def

square_root (x) :

guess = x/2

eps = 0.01

while abs (guessx*guess—-x) >= eps:
guess = (guess + x/guess) /2

return guess

20
square_root (z)

Takes input x and outputs its square root
Note: uses another function inside it: built-in function abs
Abstraction, reusability, reliability

21/28

How Good is This Algorithm? (Taylor’s Version)
Recall from Harjoat’s Class: Taylor Series Expansion of a Function

> (k) — a)
f(X):f(a)_sz (1)
k=1 :
And we have:
© f(x) = VX
0 = 5

. f”(x):ﬁ:ﬂ/z...

22/28

How Good is This Algorithm? (Taylor’s Version)
Recall from Harjoat’s Class: Taylor Series Expansion of a Function

e (k)
Zf a)x a)k)

k=1

And we have:
© f(x) = VX
) = 5
o f(x) = ﬁ:ﬂ/z
Approximate /x about x = h3 using first two terms in Taylor series:
R i +th

~ X =g
VxR ho oy B = g

Which is Heron’s formula. So:
 Heron implicitly used a Taylor Series expansion!
» Formula accurate up to second-order terms in Taylor series

 To get a better formula: use more terms from Taylor series 05 /08

A Second Example: Primality Testing

Problem setting: given an integer n, decide whether n is prime.

Relevance: highly related to the way that we keep information private
on the internet (Google RSA Encryption for more on this)

Algorithm (Brute-Force):

» Check whether nis exactly divisible by any integer between 2
and [v/n] (inclusive)

23/28

A Second Example: Primality Testing

Problem setting: given an integer n, decide whether n is prime.

Relevance: highly related to the way that we keep information private
on the internet (Google RSA Encryption for more on this)

Algorithm (Brute-Force):
» Check whether nis exactly divisible by any integer between 2
and [v/n] (inclusive)

Improvements?

23/28

A Second Example: Primality Testing

Problem setting: given an integer n, decide whether n is prime.

Relevance: highly related to the way that we keep information private
on the internet (Google RSA Encryption for more on this)

Algorithm (Brute-Force):
» Check whether nis exactly divisible by any integer between 2
and [v/n] (inclusive)
Improvements?

* Need only check whether n divisible by prime number. So, can
accelerate the method using recursion (see later).

23/28

A Second Example: Primality Testing

Problem setting: given an integer n, decide whether n is prime.

Relevance: highly related to the way that we keep information private
on the internet (Google RSA Encryption for more on this)

Algorithm (Brute-Force):
» Check whether nis exactly divisible by any integer between 2
and [v/n] (inclusive)
Improvements?

* Need only check whether n divisible by prime number. So, can
accelerate the method using recursion (see later).

* If n > 2 and even then not prime, so can restrict to odd numbers
and searching between 3 and |v/n|

23/28

A Second Example: Primality Testing

Problem setting: given an integer n, decide whether n is prime.

Relevance: highly related to the way that we keep information private
on the internet (Google RSA Encryption for more on this)

Algorithm (Brute-Force):
» Check whether nis exactly divisible by any integer between 2
and [v/n] (inclusive)
Improvements?

* Need only check whether n divisible by prime number. So, can
accelerate the method using recursion (see later).

* If n > 2 and even then not prime, so can restrict to odd numbers
and searching between 3 and |v/n|

* Many, many more refinements where that came from. ..

23/28

© ® N e G R W N =

Primality Function

import math
def is_prime(n):
if isinstance(n, int):
if n <= 1:
return False
elif n == 2:
return True
elif n & 2 ==
return False
else:
for i in range (3, int (math.sqrt(n)) + 1,
ifn % 1 ==
return False
return True
else:
return 'Please ensure n is an Int'

24/28

© ® N e G R W N =

Primality Function

import math
def is_prime(n):
if isinstance(n, int):
if n <= 1:
return False
elif n == 2:
return True
elif n & 2 ==
return False
else:
for i in range (3, int (math.sqgrt(n)) + 1, 2):
ifn % 1 ==
return False
return True
else:
return 'Please ensure n is an Int'

* Includes a check that n is of the correct type, i.e., some error
handling in case it isn'’t.

24/28

Why is Checking Inputs Important?
Slos Angeles Times

Mars Probe Lost Due to Simple Math Error

BY ROBERT LEE HOTZ
OCT. 1, 1999 12 AM PT

TIMES SCIENCE WRITER
NASA lost its $125-million Mars Climate Orbiter because spacecraft engineers failed
to convert from English to metric measurements when exchanging vital data before

the craft was launched, space agency officials said Thursday.

A navigation team at the Jet Propulsion Laboratory used the metric system of
millimeters and meters in its calculations, while Lockheed Martin Astronautics in
Denver, which designed and built the spacecraft, provided crucial acceleration data in

the English system of inches, feet and pounds.

(This is about 230M USD in 2024 dollars)
Failing to check inputs for correct units can be expensive!
We’ll discuss debugging in more detail later in the class

25/28

How to read Python error messages

A traceback is Python telling you: (1) what failed, (2) where, and (3) why.
When debugging:

« Start at the bottom line, which tells you the error (e.g., NameError,
TypeError).

» Then look one step up: failing line of code.
« Ask yourself: what type did Python think this thing was? (use type (x)
or print it)
Common beginner errors:
* NameError: a variable is not defined (typo or scope issue)
* TypeError: a wrong type (e.g., adding a string to a number)

* IndentationError: Python cant parse the block structure

26/28

Stuck? Some advice
Here are some strategies for if you get stuck:
» Check for typos/spelling/the type of each variable.

* Read each line and ask yourself what it does, then run it in the
command prompt and check whether it does what you think it
does.

* Read the docs

* Read error messages carefully, and Google if you don’t
understand what they mean

« Try to see whether your code solves a particularly simple version
of the problem and then go from there.

» For a given input, write out what each step of the answer should
be by hand and see whether the command prompt matches what
you wrote

Try to print variables at intermediate points in the code, and see if
what they say is what you think they should say

27/28

Marking and submission

Tutorial leads will explain how this works—then we will start coding!

28/28

