
Data Structures and
Algorithms
Lecture 2

Ryan Cory-Wright
r.cory-wright@imperial.ac.uk



A Brief Statement on The Difficulty of This Class

• Python is not a prerequisite

• If you have coded before, you will have a head start

• If you haven’t, that’s totally fine—this class is designed to get you
there, and the tutorials + exercises are where most of the
learning happens

2 / 28



Today: What You Should be Able to do

By the end of today, you should be able to:

• Explain what a function is (inputs → outputs) and why we use
them.

• Write a simple function with a return statement.

• Describe an algorithm as step-by-step instructions for turning
input into output.

• Implement an algorithm in Python and sanity-check it on small
examples.

Note: you will learn some of this in the coding part of the lecture.

3 / 28



Today

1. Recap

2. Functions

3. A first algorithm

4 / 28



What is the output?

1 x = 5

2 6 = y

3 print(x)

4 print(y)

A. 5, then 6

B. 5, then 5

C. 6, then 6

D. An error

E. I don’t know

5 / 28



What is the output?

1 a = 2

2 b = a

3 a = 5

4 print(a)

5 print(b)

A. 2, then 2

B. 2, then 5

C. 5, then 2

D. 5, then 5

E. I don’t know

6 / 28



What is the output?

1 x = 5

2 if x >= 0:

3 print(1)

4 elif x < 20:

5 print(2)

6 else:

7 print(3)

8 print(4)

A. 1, then 2, then 4

B. 1, then 4

C. 4

D. 3, then 4

E. I don’t know
7 / 28



What is the output?

1 x = 3

2 while x > 0:

3 print(x)

4 x = x - 1

A. 3, 2, 1

B. 3, 2, 1, 0

C. 3, 2

D. 2, 1, 0

E. I don’t know

8 / 28



What is the output?

1 x = 3

2 while x > 0:

3 x = x - 1

4 print(x)

A. 3, 2, 1

B. 2, 1, 0

C. 1

D. 0

E. I don’t know

9 / 28



Today

1. Recap

2. Functions

3. A first algorithm

4. Homework 1

10 / 28



We have already been using functions

In Session 1, we used built-in functions:

1 >>> abs(-3)

2 3

3 >>> max(5, 3, 10)

4 10

5 >>> max(abs(-5), min(3, 9))

We say we call the function, specifying the arguments within
parentheses.

What happens when we do this, and why are functions useful?

11 / 28



We use functions to organise tasks

A function is a named group of statements to perform a specific task.

• Input data → function → output data

1 # Let's define a function abs_value

2 def abs_value(a):

3 if a < 0:

4 return -a # The return statement stops function execution, outputs -a

5 else:
6 return a

7

8 # This function call runs the code block inside abs_value for a = -3

9 # The returned value is assigned to the variable y

10 y = abs_value(-3)

A function is like a factory: in goes input data (car parts), out comes
output data (car).

A function may have multiple parameters separated by commas. It
may return multiple values separated by commas.

12 / 28



We use functions to organise tasks

A function is a named group of statements to perform a specific task.

• Input data → function → output data

1 # Let's define a function abs_value

2 def abs_value(a):

3 if a < 0:

4 return -a # The return statement stops function execution, outputs -a

5 else:
6 return a

7

8 # This function call runs the code block inside abs_value for a = -3

9 # The returned value is assigned to the variable y

10 y = abs_value(-3)

A function is like a factory: in goes input data (car parts), out comes
output data (car).

A function may have multiple parameters separated by commas. It
may return multiple values separated by commas.

12 / 28



Why functions?

1. Abstraction: user does not need to know what happens inside

2. Make code easily re-usable and modular

3. Changing code becomes easier: we don’t have to copy same
code in many places

• Best practice: If you ever find yourself copy-pasting code, stop and
write a function instead.

• Otherwise, you might fix a bug in one part of code and forget to fix
it elsewhere.

13 / 28



A Reliable Pattern for Writing Functions
Step 1: What are the Inputs/Outputs? What goes in? What comes
out? Any assumptions?
Step 2: Write down the function

1 def is_even(n: int) -> bool:

2 """Return True iff n is an even integer."""

3 return (n % 2) == 0

Step 3: Test on small instances immediately.

1 assert is_even(0) is True

2 assert is_even(1) is False
3 assert is_even(10) is True

14 / 28



Today

1. Recap

2. Functions

3. A first algorithm

15 / 28



Solving computational problems

Data = digitised information

Data structures describe ways to organise data

Algorithms describe how we process data:

• Step-by-step instructions

• Take input data and produce output data

We write algorithms into programs (eg in Python)

Computers interpret and execute programs

16 / 28



An algorithm is a recipe

Algorithm:

• Step-by-step instructions

• Takes input (data) and produces output (data)

Pics: Hungry Gals, IKEA.

17 / 28



An algorithm is a recipe

Algorithm:

• Step-by-step instructions

• Takes input (data) and produces output (data)

Pics: Hungry Gals, IKEA. 17 / 28



How do you calculate a square root?

The square root of a number x is a number y such that
y × y = x (let’s focus on positive roots)

square_root

(function)

25

10

5

???

A function is like a factory

• In goes number, out comes square root

• Inside the factory, there’s an algorithm

18 / 28



How do you calculate a square root?

The square root of a number x is a number y such that
y × y = x (let’s focus on positive roots)

square_root

(function)

25

10

5

???

A function is like a factory

• In goes number, out comes square root

• Inside the factory, there’s an algorithm

18 / 28



How do you calculate a square root?

The square root of a number x is a number y such that
y × y = x (let’s focus on positive roots)

square_root

(function)

25

10

5

???

A function is like a factory

• In goes number, out comes square root

• Inside the factory, there’s an algorithm

18 / 28



Square-root algorithm

The square root of x is y such that y × y = x

Algorithm (Heron of Alexandria, first century AD):

• Make a guess, for example x/2

• Repeat three times:
• Divide the original number x by the guess to get a ratio
• Find the average of the guess and the ratio
• Use this average as the next guess

x g g*g x/g (g+x/g)/2
i = 1 10 5 25 2 3.5
i = 2 10 3.5 12.25 2.857 3.179
i = 3 10 3.179 10.103 Close enough!

19 / 28



Square-root algorithm

The square root of x is y such that y × y = x

Algorithm (Heron of Alexandria, first century AD):

• Make a guess, for example x/2

• Repeat three times:

• Divide the original number x by the guess to get a ratio
• Find the average of the guess and the ratio
• Use this average as the next guess

x g g*g x/g (g+x/g)/2
i = 1 10 5 25 2 3.5
i = 2 10 3.5 12.25 2.857 3.179
i = 3 10 3.179 10.103 Close enough!

19 / 28



Square-root algorithm

The square root of x is y such that y × y = x

Algorithm (Heron of Alexandria, first century AD):

• Make a guess, for example x/2

• Repeat three times:
• Divide the original number x by the guess to get a ratio

• Find the average of the guess and the ratio
• Use this average as the next guess

x g g*g x/g (g+x/g)/2
i = 1 10 5 25 2 3.5
i = 2 10 3.5 12.25 2.857 3.179
i = 3 10 3.179 10.103 Close enough!

19 / 28



Square-root algorithm

The square root of x is y such that y × y = x

Algorithm (Heron of Alexandria, first century AD):

• Make a guess, for example x/2

• Repeat three times:
• Divide the original number x by the guess to get a ratio
• Find the average of the guess and the ratio

• Use this average as the next guess

x g g*g x/g (g+x/g)/2
i = 1 10 5 25 2 3.5
i = 2 10 3.5 12.25 2.857 3.179
i = 3 10 3.179 10.103 Close enough!

19 / 28



Square-root algorithm

The square root of x is y such that y × y = x

Algorithm (Heron of Alexandria, first century AD):

• Make a guess, for example x/2

• Repeat three times:
• Divide the original number x by the guess to get a ratio
• Find the average of the guess and the ratio
• Use this average as the next guess

x g g*g x/g (g+x/g)/2
i = 1 10 5 25 2 3.5
i = 2 10 3.5 12.25 2.857 3.179
i = 3 10 3.179 10.103 Close enough!

19 / 28



Square-root algorithm

The square root of x is y such that y × y = x

Algorithm (Heron of Alexandria, first century AD):

• Make a guess, for example x/2

• Repeat three times:
• Divide the original number x by the guess to get a ratio
• Find the average of the guess and the ratio
• Use this average as the next guess

x g g*g x/g (g+x/g)/2
i = 1 10 5 25 2 3.5
i = 2 10 3.5 12.25 2.857 3.179
i = 3 10 3.179 10.103 Close enough!

19 / 28



Let’s use Python

20 / 28



Square-root function

1 def square_root(x):

2 guess = x/2

3 eps = 0.01

4 while abs(guess*guess-x) >= eps:

5 guess = (guess + x/guess)/2

6 return guess

7

8 z = 20

9 y = square_root(z)

• Takes input x and outputs its square root

• Note: uses another function inside it: built-in function abs

• Abstraction, reusability, reliability

21 / 28



Square-root function

1 def square_root(x):

2 guess = x/2

3 eps = 0.01

4 while abs(guess*guess-x) >= eps:

5 guess = (guess + x/guess)/2

6 return guess

7

8 z = 20

9 y = square_root(z)

• Takes input x and outputs its square root

• Note: uses another function inside it: built-in function abs

• Abstraction, reusability, reliability

21 / 28



How Good is This Algorithm? (Taylor’s Version)
Recall from Harjoat’s Class: Taylor Series Expansion of a Function

f (x) = f (a) +
∞∑

k=1

f (k)(a)(x − a)k

k !
(1)

And we have:
• f (x) =

√
x

• f ′(x) = 1
2
√

x

• f ′′(x) = −1
4x3/2 . . .

Approximate
√

x about x = h2
0 using first two terms in Taylor series:

√
x ≈ h0 +

x − h2
0

2h0
=

x
h0

+ h0

2

Which is Heron’s formula. So:
• Heron implicitly used a Taylor Series expansion!
• Formula accurate up to second-order terms in Taylor series
• To get a better formula: use more terms from Taylor series

22 / 28



How Good is This Algorithm? (Taylor’s Version)
Recall from Harjoat’s Class: Taylor Series Expansion of a Function

f (x) = f (a) +
∞∑

k=1

f (k)(a)(x − a)k

k !
(1)

And we have:
• f (x) =

√
x

• f ′(x) = 1
2
√

x

• f ′′(x) = −1
4x3/2 . . .

Approximate
√

x about x = h2
0 using first two terms in Taylor series:

√
x ≈ h0 +

x − h2
0

2h0
=

x
h0

+ h0

2

Which is Heron’s formula. So:
• Heron implicitly used a Taylor Series expansion!
• Formula accurate up to second-order terms in Taylor series
• To get a better formula: use more terms from Taylor series

22 / 28



A Second Example: Primality Testing
Problem setting: given an integer n, decide whether n is prime.

Relevance: highly related to the way that we keep information private
on the internet (Google RSA Encryption for more on this)

Algorithm (Brute-Force):

• Check whether n is exactly divisible by any integer between 2
and ⌊

√
n⌋ (inclusive)

Improvements?

• Need only check whether n divisible by prime number. So, can
accelerate the method using recursion (see later).

• If n > 2 and even then not prime, so can restrict to odd numbers
and searching between 3 and ⌊

√
n⌋

• Many, many more refinements where that came from. . .

23 / 28



A Second Example: Primality Testing
Problem setting: given an integer n, decide whether n is prime.

Relevance: highly related to the way that we keep information private
on the internet (Google RSA Encryption for more on this)

Algorithm (Brute-Force):

• Check whether n is exactly divisible by any integer between 2
and ⌊

√
n⌋ (inclusive)

Improvements?

• Need only check whether n divisible by prime number. So, can
accelerate the method using recursion (see later).

• If n > 2 and even then not prime, so can restrict to odd numbers
and searching between 3 and ⌊

√
n⌋

• Many, many more refinements where that came from. . .

23 / 28



A Second Example: Primality Testing
Problem setting: given an integer n, decide whether n is prime.

Relevance: highly related to the way that we keep information private
on the internet (Google RSA Encryption for more on this)

Algorithm (Brute-Force):

• Check whether n is exactly divisible by any integer between 2
and ⌊

√
n⌋ (inclusive)

Improvements?

• Need only check whether n divisible by prime number. So, can
accelerate the method using recursion (see later).

• If n > 2 and even then not prime, so can restrict to odd numbers
and searching between 3 and ⌊

√
n⌋

• Many, many more refinements where that came from. . .

23 / 28



A Second Example: Primality Testing
Problem setting: given an integer n, decide whether n is prime.

Relevance: highly related to the way that we keep information private
on the internet (Google RSA Encryption for more on this)

Algorithm (Brute-Force):

• Check whether n is exactly divisible by any integer between 2
and ⌊

√
n⌋ (inclusive)

Improvements?

• Need only check whether n divisible by prime number. So, can
accelerate the method using recursion (see later).

• If n > 2 and even then not prime, so can restrict to odd numbers
and searching between 3 and ⌊

√
n⌋

• Many, many more refinements where that came from. . .

23 / 28



A Second Example: Primality Testing
Problem setting: given an integer n, decide whether n is prime.

Relevance: highly related to the way that we keep information private
on the internet (Google RSA Encryption for more on this)

Algorithm (Brute-Force):

• Check whether n is exactly divisible by any integer between 2
and ⌊

√
n⌋ (inclusive)

Improvements?

• Need only check whether n divisible by prime number. So, can
accelerate the method using recursion (see later).

• If n > 2 and even then not prime, so can restrict to odd numbers
and searching between 3 and ⌊

√
n⌋

• Many, many more refinements where that came from. . .

23 / 28



Primality Function

1 import math
2 def is_prime(n):

3 if isinstance(n, int):

4 if n <= 1:

5 return False
6 elif n == 2:

7 return True
8 elif n % 2 == 0:

9 return False
10 else:
11 for i in range(3, int(math.sqrt(n)) + 1, 2):

12 if n % i == 0:

13 return False
14 return True
15 else:
16 return 'Please ensure n is an Int'

• Includes a check that n is of the correct type, i.e., some error
handling in case it isn’t.

24 / 28



Primality Function

1 import math
2 def is_prime(n):

3 if isinstance(n, int):

4 if n <= 1:

5 return False
6 elif n == 2:

7 return True
8 elif n % 2 == 0:

9 return False
10 else:
11 for i in range(3, int(math.sqrt(n)) + 1, 2):

12 if n % i == 0:

13 return False
14 return True
15 else:
16 return 'Please ensure n is an Int'

• Includes a check that n is of the correct type, i.e., some error
handling in case it isn’t.

24 / 28



Why is Checking Inputs Important?

(This is about 230M USD in 2024 dollars)
Failing to check inputs for correct units can be expensive!
We’ll discuss debugging in more detail later in the class

25 / 28



How to read Python error messages

A traceback is Python telling you: (1) what failed, (2) where, and (3) why.
When debugging:

• Start at the bottom line, which tells you the error (e.g., NameError,
TypeError).

• Then look one step up: failing line of code.

• Ask yourself: what type did Python think this thing was? (use type(x)

or print it)

Common beginner errors:

• NameError: a variable is not defined (typo or scope issue)

• TypeError: a wrong type (e.g., adding a string to a number)

• IndentationError: Python can’t parse the block structure

26 / 28



Stuck? Some advice
Here are some strategies for if you get stuck:

• Check for typos/spelling/the type of each variable.

• Read each line and ask yourself what it does, then run it in the
command prompt and check whether it does what you think it
does.

• Read the docs

• Read error messages carefully, and Google if you don’t
understand what they mean

• Try to see whether your code solves a particularly simple version
of the problem and then go from there.

• For a given input, write out what each step of the answer should
be by hand and see whether the command prompt matches what
you wrote

• Try to print variables at intermediate points in the code, and see if
what they say is what you think they should say

27 / 28



Marking and submission

Tutorial leads will explain how this works—then we will start coding!

28 / 28


