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Course Information

• Time: Mondays 10am-1pm (will have regular breaks during lectures)

• If I forget to give us a break, please remind me!

• Place: ICBS LG19B

• Module Leader: Ryan Cory-Wright, Business School Building, Room

393 (r.cory-wright@imperial.ac.uk, ryancorywright.github.io)

• Office hours: TBD (does 3-4 PM on Monday work for everyone?)

• Course materials: Distributed via Insendi.

• Suggested Prerequisites: Graduate-level courses in optimization and

probability, or similar. Mathematical maturity.
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Administration

Important dates:

• Homework 1: released week 2, due week 4 (10%)

• Homework 2: released week 4, due week 6 (10%)

• Homework 3: released week 6, due week 9 (10%)

• Critical paper review: paper you will be reviewing selected by week

2, to be presented in week ∈ {3, . . . , 9} (10%)

• Quiz: 180 minutes in-class, week 7, on material from weeks 1–6

(30%)

• Suggestion: start HW3 after the quiz.

• Final project: short report due week 10, in-class presentation on

project week 10 (30%)

• Optional but highly encouraged: You should create a short project

proposal outlining what you intend to do and hand it in week 6.

• Email policy: if you email me by the Friday before something is due,

I’ll aim to respond promptly for an assignment due on a Tuesday.

However, no guarantees if you email later than that.
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Project Ideas

• Incorporate decision-making under uncertainty into your research

• Write a survey on a topic related to decision-making under

uncertainty, and implement some methods related to this topic in a

programming language of your choice

• Explore a small idea related to decision-making under uncertainty

• Best-case scenario: When I was a Ph.D. student, some class projects

turned into journal papers. E.g.,

• Pareto Efficiency in Robust Optimization. D. Iancu and N. Trichakis.

Management Science 60(1):130–147 (2014).

• On polyhedral and second-order cone decompositions of semidefinite

optimization problems. D. Bertsimas and R Cory-Wright. OR Letters

48(1):78–85 (2020).

• Probabilistic guarantees in robust optimization. D. Bertsimas, D.

Den Hertog, and J. Pauphilet. SIAM Journal on Optimization

31(4):2893–2920 (2021).
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This Seems Quite Rigorous: Why Are we Working This Hard?

Fair question!

A goal of an MRes/PhD is to put you in a position where you could be

competitive for an academic job when you graduate (or after you do a

postdoc, depending on the field). This gets tougher each year, because

competition from other institutions is getting fiercer.

Realistically, to be competitive in the current (Operations) market, you

need an accepted paper and a few papers with revisions, all in top

journals (e.g. OR/MS), by the time you are in the final year of your PhD

(feel free to ask questions about this in office hours). That means you

need to be able to write papers that can get into top journals from early

on in your degree.

To be in that position, you need to quickly pick up things that 15 years

ago you might have learned across the first three years of an MRes/PhD.

So, we will work hard this term to give you a good shot.
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Grades and Philosophy Towards Amount of Content in Course

• Grades: They matter a lot at the undergraduate level, but I don’t

view them as important at the MRes/PhD level—you are here to

learn how to do research, and you will be judged on how good your

research is (I’ve *never* been asked for a transcript of my grad

school grades, most faculty position applicants don’t include their

graduate level GPA). You should be here because you want to be

here/learn because you want to learn.

• My philosophy in this class is to throw a lot of content at you, in

hope some of it is useful. “Drinking from the firehose”.

• We don’t want to go so fast that you don’t take anything in. So will

periodically take temperature, adjust speed accordingly.

• Don’t be alarmed if you feel that you are drowning at some points,

grades will come out in the wash.
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Who am I?

Bio:

• B.E (Hons) in Engineering Science, University of Auckland

• Ph.D. in Operations Research, MIT, advised by Dimitris Bertsimas

• Postdoctoral fellow, IBM Research (2022-23)

• Assistant Professor of Analytics and Operations at Imperial College

Business School and Imperial-X since July 2023

• Hobbies: running (training for a marathon), cycling, skiing.

Research:

• Broadly interested in optimization

(convex/mixed-integer/semidefinite/under uncertainty)

• And its applications in machine learning, statistics, renewable energy

• Recently involved in a collaboration with OCP (a large fertilizer

manufacturer) to fully decarbonize their production system by

investing $2 Bn USD in solar panels/batteries

• Using basically the techniques we learn in this class!
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Who are you?

Good question! During next 10 mins, please write down on a piece of

paper (or email me at r.cory-wright@imperial.ac.uk), the following:

• Your name

• Your background in optimization and probability theory

• Why you are taking this class, and what you expect to get out of it

• If you are auditing, whether you intend to complete assignments etc.

• Whether there is anything in the syllabus that you weren’t expecting

to learn, or anything that isn’t in the syllabus that you were

expecting to learn

• How many hours a week you are expecting to spend on each of:

reading, homework, additional exercises, project

• Anything else you think I should know (e.g., “I’ll be away in week 5

because I’ll be at a conference”).

Thanks! I’ll aim to take feedback on board as I prep rest of module
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Class Overview and Motivation
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Why This Class?

• You have learned about optimization: a framework for, given a

model of the world, making decisions that perform well for model

• But, this model of the world only exists in our imagination

• In reality, we constructed this model using data, which may be

uncertain. Why?

• Measurement error

• Implementation error

• Data might not have been observed yet

• The future distribution may not look like the past

• If we want to guarantee that our optimization decisions perform well

in the real world, we need to account for uncertainty in our models
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Class Objectives and Structure

Objectives:

• Introduce you to three different modeling paradigms for

decision-making under uncertainty

• Provide background to explore the latest literature and apply it

• (Help) prepare you to perform research in topics involving

decision-making under uncertainty+ (Help) build background

knowledge for performing research more broadly too

Structure:

0. Background in Optimization and Probability (week 1)

1. Stochastic Optimization (weeks 2–4)

2. Robust Optimization (weeks 5–8)

3. Dynamic Optimization (weeks 9–10)
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Paradigm 1: Stochastic Optimization

(Weeks 2–4)

• Model uncertainty by assuming uncertain parameters in optimization

problem follow a joint probability distribution, which we know

• Optimization over “random” parameters

• Typically (aim to) minimize expected cost with respect to a joint

probability distribution

• Given decision variables x in a known feasible region X , uncertain

parameters ξ, and a known cost function c(x , ξ), solve

min
x∈X

E[c(x , ξ)]

• Appealing performance guarantees, but (a) might be hard to

estimate joint probability distribution for ξ, (b) probability theory

can be intractable in high-dimensional settings (e.g., expectations

hard to compute)
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Paradigm 2: Robust Optimization

(Weeks 5–8)

• Model uncertainty by assuming nature selects uncertain parameters

adversarially, but is bounded in her capacity to be adversarial

• Often yields a deterministic equivalent with a few more variables,

using techniques from duality

• More tractable than stochastic optimization, but also more

conservative (why?)

• We will also look at distributionally robust optimization (DRO),

which aims to combine performance guarantees of SO and

tractability of RO. Need to understand SO and RO to understand

DRO, so we look at SO and RO first

13
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Paradigm 3: Dynamic Optimization

• Model uncertainty using a stagewise independence assumption to

improve traceability

• Popular in some parts of Operations Research and Management

Science, especially where things are predictably uncertain

• Ali Aouad (LBS/MIT) is going to be running a full class on

Dynamic Optimization this summer—we will briefly touch on it here,

but I strongly encourage you to sign up for that class, especially if

you would like to learn more about Dynamic Optimization
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Aside: “Program” vs “Optimization Problem”

• Most classics texts refer to “Linear Programming”, “Stochastic

Programming” etc. rather than “Linear Optimization Problem”

• “Program” originally meant “ordered list of events to take

place/procedures to be followed/schedule”. Dantzig and others

popularized term in the 50s, before computers were widely available.

• Today, everyone and their dog who aren’t research-active in

Operations think “program” means “computer-stuff”. So I and lots

of others use “optimization problem” instead, and you should too!

• If you see a textbook or journal article that uses “program” rather

than “optimization problem”, don’t worry, it means the same thing.
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Common Threads

• Class requires knowledge of optimization and probability → rest of

lecture reviews optimization and probability

• Material in lecture isn’t directly examinable, only to extent we use it

in subsequent lectures

• Don’t worry if you don’t know all the material. You’ll learn

16



Common Threads

• Class requires knowledge of optimization and probability → rest of

lecture reviews optimization and probability

• Material in lecture isn’t directly examinable, only to extent we use it

in subsequent lectures

• Don’t worry if you don’t know all the material. You’ll learn

16



Let’s break for 5 minutes here.
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Probability Bootcamp



Fundamentals of Probability
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Don’t Panic

The notation/language in the next couple of slides might not be familiar.

The beginner should not be discouraged if he finds that he does

not have the prerequisites for reading the prerequisites

–Paul Halmos

• A class on probability is a prerequisite. But. . .

• If you need to, you can read up on this in chapter 1 of Probability

and Random Processes by Grimmett and Stirzaker

• We are about to go through the most useful conclusions of a first

course on probability. So we will quote results, but not do any proofs
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Probability Spaces: Gory Definitions

• Ω: a sample space of possible outcomes (e.g. from an experiment).

Cardinality could be finite, countably infinite, or uncountably infinite

• F a sigma-algebra, or set of all subsets of Ω

• ∅ ∈ F
• If A ∈ F then Ac ∈ F
• If Ai ∈ F ∀i then ∪iAi ∈ F

• P a probability measure, which assigns a non-negative weight to each

measurable subset A ∈ F of Ω such that (Kolmogorov’s Axioms)

• P(∅) = 0

• P(Ω) = 1

• If Ai ∈ F are disjoint then P(∪iAi ) =
∑

i P(Ai )

Probability Space

Let Ω be a sample space, F be a Sigma algebra, and P be a probability

measure defined on (Ω,F). Then, we say that the triple (Ω,F ,P) is a
probability space

18
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Probability Spaces: A Worked Example

Worked example of flipping a fair coin once: Outcomes are H and T

• Ω = {H,T}
• F = {∅, {H}, {T}, {H,T}}
• P : P(∅) = 0,P(H) = P(T ) = 1/2,P({H,T}) = 1

What about if we flip a fair coin twice?

19
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Why do we Need Sigma Algebras?

It’s pretty intuitive that we need to define a sample space and a

probability measure to talk about the possible outcomes of an

experiment. But why do we need Sigma algebras?

Answer: There are non-measurable subsets of [0, 1]n, which are

challenging to assign a probability to in a consistent way. So we screen

them out by only assigning probabilities to measurable subsets. But this

is mainly an issue when writing proofs, not in practice.
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Random Variables

Let (Ω,F ,P) be a probability space. A random variable X is a

real-valued function X : Ω → R such that the set {ω : X (ω) ≤ c} is

F-measurable for each c ∈ R

21



Related Terminology

• We say that an event A ∈ F occurs almost surely if it occurs with

probability 1. Or equivalently, if the event does not occur with

probability 0, i.e., P(Ac) = 0

• But be careful with definitions! E.g., if we let X be a uniform

random variable on [0, 1] and c ∈ [0, 1] be a constant then the event

X ̸= c almost surely occurs. But for any X , we can pick some

d ∈ [0, 1] ex-post observing X such that X = d

22
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Modes of Convergence

22



Why do we Need to Know About Modes of Convergence?

• In stochastic optimization, we often want to talk about a situation

where we have access to a finite number of data points, which we

take to be i.i.d. observations from a stochastic process

• Accordingly, we would like to talk about how fast estimators

converge towards the “true” stochastic process

• Modes of convergence provide us with a rigorous way of talking

about the speed of convergence
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Almost Sure Convergence

Almost Sure Definition

Let (Ω,F ,P) be a probability space and let {Xi}i∈N,X be random

variables. Suppose that A ∈ F is a measurable set such that P(A) = 1

and for all ω ∈ A we have

Xi (ω) → X (ω) as i → ∞.

Then, we say that Xi
a.s.→ X .
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Convergence in Probability

Convergence in Probability Definition

Let (Ω,F ,P) be a probability space and let Xi ,X be random variables.

Suppose that for every ϵ > 0 we have that

lim
i→∞

P(|Xi − X | ≥ ϵ) = 0.

Then, we say that Xi
p.→ X .

Note: almost sure convergence implies convergence in probability, not

necessarily other way around. Can you think of a counterexample?

Let Xi be uniformly distributed on [ i
2k
, i+1

2k
] where k is such that

k ≤ log2(n) and 2k + i = n. Then, X1 ∼ U [0, 1],
X2 ∼ U [0, 1/2],X3 ∼ U [1/2, 1],X4 ∼ U [0, 1/4] etc.

Thus, P(|Xi | > ϵ) → 0, but Xi (ω) = 1 infinitely often.
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Convergence in Distribution

Convergence in Distribution Definition

Let (Ω,F ,P) be a probability space and let Xi ,X be random variables

with CDFs Fi ,F . Suppose that for every x where Fi is continuous we

have that

lim
i→∞

Fi (x) = F (x)

Then, we say that Xi
d.→ X .

Note: Convergence in probability implies convergence in distribution, but

not necessarily the other way around. Can you think of a

counterexample?

Let X1 ∼ N (0, 1), Xi = (−1)iX1. Then, Xi ’s equal in distribution, but

clearly do not converge in probability.
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Limit Theorems and Concentration

Inequalities
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Laws of Large Numbers

Strong Law of Large Numbers

Let {Xi}i∈N be a sequence of i.i.d. random variables with E[|Xi |] < ∞.

Then

1

n

n∑
i=1

Xi
a.s.→ E[X1] (1)

Weak Law of Large Numbers

Let {Xi}i∈N be a sequence of i.i.d. random variables with E[|Xi |] < ∞.

Then

1

n

n∑
i=1

Xi
p.→ E[X1] (2)

There exist versions of both laws that hold under weaker assumptions

than i.i.d.ness, e.g., pairwise independence
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Central Limit Theorem

Central Limit Theorem

Let {Xi}i∈N be a sequence of i.i.d. random variables with finite mean µ

and finite variance σ2. Then,

lim
n→∞

∑n
i=1 Xi − nµ

σ
√
n

d.→ N (0, 1) (3)
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What if we Have a Finite Amount of Data?

I hear you say “But in practice, we have access to a finite amount of

training data, so we will never actually attain these limits!”

Fair, SLLN/CLT provide good motivation for stochastic optimization, but

we also need results that work with finite amounts of data

Berry-Esseen Theorem

Let {Xi}i∈N be a sequence of i.i.d. random variables with E[Xi ] = 0,

E[X 2
i ] = σ2 < ∞, E[|X |3] = ρ < ∞. Then, define Yn :=

∑n
i=1 Xi

n with

CDF Fn. There exists some positive constant C < 0.4748 such that

|Fn(x)− Φ(x)| ≤ Cρ

σ2
√
n
, (4)

where Φ is the CDF of a standard normal

This result says that sample averages behave more and more like normal

distributions as n gets larger
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I hear you say “But in practice, we have access to a finite amount of

training data, so we will never actually attain these limits!”

Fair, SLLN/CLT provide good motivation for stochastic optimization, but

we also need results that work with finite amounts of data
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Markov’s Inequality

For any non-negative random variable X and any t ∈ R+, we have

Markov’s Inequality

P(X > t) ≤ min

(
1,

E[X ]

t

)
(5)

A weak but very general result about likelihood of “extreme” events

How would we prove this?

Let E[X ] = P(X > a)E[X |X > a] + P(X ≤ a)E[X |X ≤ a].

Therefore, E[X ] ≥ P(X > a)E[X |X > a] ≥ aP(X > a)
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Chebyshev’s Inequality

For any random variable X with finite variance σ2 and expected value µ

Chebyshev’s Inequality

P(|X − µ| ≥ tσ) ≤ min(1,
1

t2
) (6)

This is a slightly stronger result about the likelihood of extreme events

31



Chebyshev’s Inequality

For any random variable X with finite variance σ2 and expected value µ

Chebyshev’s Inequality

P(|X − µ| ≥ tσ) ≤ min(1,
1

t2
) (6)

This is a slightly stronger result about the likelihood of extreme events

31



Hoeffding’s Inequality

For a sequence of i.i.d. Bernoulli(p) random variables Xi we have

Hoeffding’s Inequality

P

(∣∣∣∣∣
n∑

i=1

Xi − np

∣∣∣∣∣ ≥ nt

)
≤ 2 exp

(
−nt2

2

)
∀t > 0 (7)

Conclusion: i.i.d.ness lets us concentrate uncertainty exponentially
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McDiarmind’s Inequality

Let f : Rn → R be a function of n independent random variables Xi for

each i , which almost surely have ranges Xi . Let f satisfy the bounded

differences condition

sup
x̄∈Xi

|f (x1, . . . , xn)− f (x1, . . . , xi−1, x̄ , xi+1, . . . , xn)| ≤ ci .

Then, f satisfies the inequality:

McDiarmind’s Inequality

P (|f (X1, . . .Xn)− E[f (X1, . . .Xn)]| ≥ ϵ) exp

(
−2ϵ2∑n
i=1 c

2
i

)
(8)

Conclusion: functions of independent and bounded random variables

concentrate exponentially
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We just “covered” quite a lot of content!

Let’s break for 10 minutes here.
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Optimization Bootcamp



Basic Terminology: What is an Optimization Problem

min
x∈Rn

f (x) (9)

s.t. fi (x) ≤ 0, ∀i ∈ [m1], (10)

hj(x) = 0, ∀j ∈ [m2]. (11)

• Decision variables: x ∈ Rn is the vector to be chosen

• Objective function: f is to be minimized

• Inequality constraints: fi , equality constraints: hj

Variations: maximize objective, multiple objectives
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How Expressive is Optimization?

We can phrase almost anything as an optimization problem.

E.g., Fermat’s Last Theorem

min
x,y ,z,n

(xn + yn − zn)2

s.t. x , y , z ≥ 1, n ≥ 3, x , y , z , n Integer.

A good question to ask is “what optimization problems can we solve?”
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What is Tractable?
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What Makes Optimization Tractable?

Attempt #1: linear optimization problems are tractable —we can solve

them via the simplex method or IPMs

From “In Pursuit of the Traveling Salesman” by Bill Cook

News of the general linear-programming model, and the simplex

algorithm for its solution, was delivered by George Dantzig in 1948 at a

meeting held at the University of Wisconsin. The event was a defining

moment for Dantzig, who has described often its proceedings.

Like many good stories, repeated telling may have shifted a few details

over the years, but all versions capture the spirit of a nervous rising star

facing a large and distinguished group of mathematicians and

economists. During the discussion following Dantzig’s lecture, Harold

Hotelling, great in both academic stature and physical size, rose from

his seat, stated simply, “But we all know the world is nonlinear,” and

sat down. Dantzig was lost for a reply to such a sweeping criticism.
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What Makes Optimization Tractable?

Attempt #1: linear optimization problems are tractable

—we can solve them via the simplex method or IPMs

From “In Pursuit of the Traveling Salesman” by Bill Cook

Suddenly another hand in the audience was raised. It was John von

Neumann. “Mr. Chairman, Mr. Chairman,” he said, “if the speaker

does not mind, I would like to reply for him.” Naturally I agreed. von

Neumann said: “The speaker titled his talk ‘linear programming’ and

carefully stated his axioms. If you have an application that satisfies the

axioms, well use it. If it does not, then don’t.”

Conclusions:

• Dantzig and von Neumann are right: Linear is tractable

• Hotelling is right (Dantzig later admits as much): The world is

nonlinear, and saying “linear is tractable” is not sufficient
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What Makes Optimization Problems Tractable?

Attempt #2: Convex Optimization Problems Are Tractable

T. Rockafeller (1993)

“In fact, the great watershed in optimization isn’t between linearity and

nonlinearity, but convexity and nonconvexity.”

This quote is put up quite often at conferences . . .

. . . usually, to justify using a heuristic on a non-convex problem

Let’s take it to be true for a few slides
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Convex Functions

Definition
A function f : Rn 7→ R is convex if for each x , y ∈ Rn and every

λ ∈ [0, 1] we have that

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

If f is differentiable, an equivalent definition is:

A function f : Rn 7→ R is convex if for each x , y ∈ Rn we have that:

f (x) ≥ f (y) +∇f (x)⊤(y − x).

If f is twice differentiable, an equivalent definition is:

A function f : Rn 7→ R is convex if its hessian, ∇2f (x) is positive

semidefinite over the entire domain

I like to think of this as “convex=holds water”
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An Exercise in Convexity

Classify the following sets as convex or non-convex

• {x : x ∈ [0, 1]n}

• {(x , θ) ∈ R2 : θ ≥ x3}
• Set of prime numbers

• The dual cone C∗ := {y : x⊤y ≤ 0 ∀x ∈ C} for an arbitrary set C.
• The polar set Co := {y : x⊤y ≤ 1 ∀x ∈ C} for an arbitrary set C.
• Set of rank-one matrices {xx⊤ : x ∈ Rn}

For more practice on this, Chapter 2 of Boyd and Vandenberghe (2004).
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An Exercise in Convexity: Solutions

Classify the following sets as convex or non-convex

• {x : x ∈ [0, 1]n}: Convex
• {(x , θ) ∈ R2 : θ ≥ x3}

• x3 is quasiconvex but nonconvex, so this set is not convex.

• Set of prime numbers: Non-convex (3 and 5 are prime, 4 is not).

• The dual cone C∗ := {y : x⊤y ≤ 0 ∀x ∈ C} for an arbitrary set C:
convex (verify definition of convexity)

• The polar set Co := {y : x⊤y ≤ 1 ∀x ∈ C} for an arbitrary set C:
convex (verify definition of convexity)

• Set of rank-one matrices {xx⊤ : x ∈ Rn}: Non-convex (aa⊤ and

bb⊤ are rank one, but 1
2 (aa

⊤ + bb⊤) may not be)

For more practice on this, Chapter 2 of Boyd and Vandenberghe (2004).
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Convex Optimization: Why Do We Like Convex Functions?

min
x

f (x)

s.t. g(x) ≤ q

Convex optimization is relatively “easy” because of three key features:

• Convex Feasible Set: The feasible set {x | g(x) ≤ q} is a convex

set, which has many good properties we like:

(a) A Convex Set (b) A Non-Convex Set

• Local-Global Correspondence: A local optimum of f (x) is

guaranteed to be the global optimum (why?)

• Strong Duality: Convex optimization also satisfies strong duality

(subject to a technical condition called Slater’s condition)
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Rockafeller, Revisited

T. Rockafeller (1993)

“In fact, the great watershed in optimization isn’t between linearity and

nonlinearity, but convexity and nonconvexity.”

What do we really think of this quote?

• Any problem can be rewritten as a convex problem!

• Rewrite in epigraph form

• Replace feasible region with its convex hull

• Verifying the convexity of a function is NP-hard

• Not all convex sets can be efficiently optimized over (copositive

matrices, non-negative polynomials)

• Some non-convex problems can be efficiently solved in practice

(TSPs, computing the leading eigenvector of a matrix)

• Conclusion: Rockafeller is closer than attempt #1, but wrong
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Attempt #3: What is Tractable?

This is a tricky question, especially because the “real” answer keeps

changing as solvers and our algorithms improve. An attempt:

• A problem is theoretically tractable if it is solvable in polynomial time

• A problem is practically tractable if it is solvable in a reasonable

amount of time at instance sizes that we care about in practice

• Generally speaking, polynomially solvable problems are tractable,

integer problems are tractable, and polynomially solvable problems

remain tractable if we introduce integer variables

• NP-hard continuous problems are not (yet) practically tractable, but

(in my opinion, others might disagree) will be in ten years time →
Gurobi released a spatial branch-and-bound solver for them in 2019

• In the remaining part of this lecture, we’ll go through classes of

practically tractable problems that often show up in practice
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Convex Conic Optimization
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Linear Optimization

A generic linear optimization problem:

min
x∈Rn

c⊤x

s.t. Ax ≤ b,Dx = d .

Modeling power:

• Maximum of t linear functions: t ≥ ci + d⊤
i x ∀i ∈ [t]

• ℓ1 norm: ∥x∥1 ≤ t ⇐⇒ ∃u : −u ≤ x ≤ u, e⊤u ≤ t

Why is this useful?

• Can certify infeasibility of a linear system using Farkas’s Lemma

• Can solve even massive LOs with modern solvers

How to solve?

• Mosek or Gurobi (simplex or interior point method)

• Exercise: What is the dual of this LO? (Do on board)
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Conic Optimization

A generic conic optimization problem:

min
x∈Rn

c⊤x

s.t. Ax = b, x ∈ K.

Where K is a closed, convex pointed and solid cone

• Convex cone: x , y ∈ K implies λx + µy ∈ K for all λ, µ ≥ 0

• Pointed: K ∩ {−K} = {0}
• Solid: ∃x ∈ K, ϵ > 0 : ∀y , ∥x − y∥ ≤ ϵ =⇒ y ∈ K

• We usually want K to be an outer product of the non-negative

orthant, second-order cone, semidefinite cone, exponential cone, and

power cone, so that it can be solved using the Mosek solver

• Because some other convex cones are not tractable (copositive)
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Second-Order Cone Optimization

A generic second-order cone problem:

min
x∈Rn

c⊤x

s.t. ∥A⊤
i x + bi∥2 ≤ c⊤i x + di , ∀i ∈ [m], Dx = d .

Modeling power:

• Linear inequalities

• Convex quadratics

• Portfolio risk and chance constraints

Why is this useful?

• Most general continuous problem we can solve to optimality at scale

How to solve?

• Mosek or Gurobi (interior point method)
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Modeling Power: Rotated Second-order Cone Constraints

A large class of problems can be cast as second-order cone problems since

(a) x2 ≤ yz , y , z ≥ 0 ⇐⇒

∥∥∥∥∥
(

2x

y − z

)∥∥∥∥∥
2

≤ y + z ,

(b) x⊤
i Pix + 2q⊤i x + ri ≤ 0 ⇐⇒

∥∥∥P 1
2

i x + P
−1
2

i qi

∥∥∥
2
≤
(
q⊤i P−1

i qi − ri
) 1

2

(c) t ≥ x
3
2 , x ≥ 0 ⇐⇒ ∃s : 2st ≥ x2,

1

4
x ≥ s2

And many other problems! Good places to look are:
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Semidefinite Cone Optimization

A generic semidefinite problem:

min
X∈Sn

+

⟨C ,X ⟩

s.t. ⟨Ai ,X ⟩ = bi , ∀i ∈ [m].

Modeling power:

• Linear matrix inequalities

• Eigenvalues and sums of eigenvalues

Why is this useful?

• Most general problem can solve to optimality at moderate sizes

• Lots of non-convex problems admit quite tight semidefinite

relaxations—useful for getting upper bounds

How to solve?

• Mosek (interior point method).
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Modeling Power: Semidefinite Constraints

A large class of problems can be cast as semidefinite problems since

(a) λmax(X ) ≤ t ⇐⇒ X ⪯ tI

(b)
k∑

i=1

λi (X ) ≤ t ⇐⇒ ∃θ,U : t ≥ kθ + tr(U), θI+ U ⪯ X

(c) ∥X∥∗ ≤ t ⇐⇒ ∃U ,V :

(
U X
X⊤ V

)
⪰ 0, 2t ≥ tr(U) + tr(V )

And many other problems! Good places to look are:
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Integer Optimization

50



Integer Optimization

Integer optimization generalizes linear optimization. For instance,

min
x∈Zn

c⊤x

s.t. Ax ≤ b.

We can also have both continuous and discrete variables: mixed-integer

optimization (MIO), mixed-integer conic optimization (MICO)

How to solve:

• Use Gurobi (branch-and-bound)

• Branch-and-cut with Gurobi and Mosek (if mixed-integer conic)

• Dantzig-Wolfe
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Modeling: Logical Constraints

Assume x1, x2, . . . xn and y1, y2, . . . yn are binary decision variables {0, 1}.
How do we model the following?

1. Exactly k of x1, x2, . . . xn are equal to 1.

x1 + x2 + x3 + . . .+ xn = k

2. At most k of x1, x2, . . . xn are equal to 1.

x1 + x2 + x3 + . . .+ xn ≤ k

3. If x1 = 1, then y1 = 1.

x1 ≤ y1

4. If at least k of x1, x2, . . . xn equals 1, then y1 = 1.

x1 + x2 + x3 + . . .+ xn − (k − 1) ≤ n ∗ y1
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Big-M Method for Modeling

Suppose we have a continuous variable ai ,

• How to model ∥a∥1 ≤ 5?

e⊤z ≤ 5, z ≥ a, z ≥ −a.

• How to model ∥a∥1 ≥ 5?

yi ≤ |ai |,
∑
i

yi ≥ 5.

That is,∑
i

yi ≥ 5, ai ≥ yi −Mzi , ai ≤ −yi +M(1− zi ), zi ∈ {0, 1}.

We use M and z to model the ”or” condition.
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Big-M Method for Modeling

Suppose we have a continuous variable αi such that if zi = 0 then we

must enforce αi = 0. What are two ways to model this?

• We add the constraint:

−Mzi ≤ αi ≤ Mzi , where M is a big number.

Question: how do you choose M practically?

We would like M to be as small as possible, provided it does not

restrict the feasible region, i.e. consider ||α||∞.
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Before You go... Readings

• Remind yourself of optimization, if it’s not immediately familiar.

Especially duality and convexity (chapters 2-5 in Boyd and

Vandenberghe (2004))

• Remind yourself of probability theory, if it’s unfamiliar. MIT OCW

class 6.436J and the book by Grimmett and Stirzaker are good

resources.

• Read this blog post by Ben Recht on different types of

decision-making under uncertainty
. . . we turn to decision making where our current actions im-

pact future decisions. These two weeks get a bit ridiculous be-

cause this topic could comprise a full graduate school curriculum.

Should this lecture be about linear feedback systems, stochastic

programming, robust optimization, model predictive control,

dynamic programming, reinforcement learning, or combinato-

rial search? Uh, it sort of needs to be about all of them.

– It seems this class is on a good track :-)
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Let’s wrap up here

Figure 2: Calvin Explains Recent Advances in Integer Optimization
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Thank you, and see you next week!
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