Decision Making Under Uncertainty: Lecture 1—Introduction and Background

Lecture 1 Ryan Cory-Wright Spring 2026

Outline of Lecture 1

Module Organization

Administriva

Class Overview and Motivation

Probability Bootcamp

Fundamentals of Probability

Modes of Convergence

Limit Theorems and Concentration Inequalities

Optimization Bootcamp

What is Tractable?

Convex Conic Optimization

Integer Optimization

Module Organization

Administriva

- Time: Mondays 9am-12pm (will have regular breaks during lectures)
 - If I forget to give us a break, please remind me!

- Time: Mondays 9am-12pm (will have regular breaks during lectures)
 - If I forget to give us a break, please remind me!
- Place: IB LG19A

- Time: Mondays 9am-12pm (will have regular breaks during lectures)
 - If I forget to give us a break, please remind me!
- Place: IB LG19A
- Module Leader: Ryan Cory-Wright, Business School Building, Room 393 (r.cory-wright@imperial.ac.uk, ryancorywright.github.io)

- Time: Mondays 9am-12pm (will have regular breaks during lectures)
 - If I forget to give us a break, please remind me!
- Place: IB LG19A
- Module Leader: Ryan Cory-Wright, Business School Building, Room 393 (r.cory-wright@imperial.ac.uk, ryancorywright.github.io)
- Office hours: as needed (we will not need three hours for each lecture, so usually at end of each class)
- Course materials: Distributed via Insendi.
- Suggested Prerequisites: Graduate-level courses in optimization and probability, or similar. Mathematical maturity.

- Homework 1: officially released week 2, due week 4 (15%)
- \bullet Homework 2: released week 4, due week 9 (15%)

- Homework 1: officially released week 2, due week 4 (15%)
- Homework 2: released week 4, due week 9 (15%)
- Critical paper review: paper you will be reviewing selected by week 2, to be presented in week $\in \{6,8,9\}$ (10%)

- Homework 1: officially released week 2, due week 4 (15%)
- Homework 2: released week 4, due week 9 (15%)
- Critical paper review: paper you will be reviewing selected by week 2, to be presented in week $\in \{6, 8, 9\}$ (10%)
- Quiz: 180 minutes in-class, week 7, on material from weeks 1–6 (30%)

- Homework 1: officially released week 2, due week 4 (15%)
- Homework 2: released week 4, due week 9 (15%)
- Critical paper review: paper you will be reviewing selected by week 2, to be presented in week $\in \{6, 8, 9\}$ (10%)
- Quiz: 180 minutes in-class, week 7, on material from weeks 1–6 (30%)
 - Suggestion: start HW2 after the quiz.
- Final project: short report due week 10, in-class presentation on project week 10 (30%)
 - Optional but highly encouraged: You should create a short project proposal outlining what you intend to do and hand it in week 6.
- Email policy: if you email me by the Friday before something is due,
 I'll aim to respond promptly for an assignment due on a Monday.
 However, no guarantees if you email later than that.

• Incorporate decision-making under uncertainty into your research

- Incorporate decision-making under uncertainty into your research
- Write a survey on a topic related to decision-making under uncertainty, and implement some methods related to this topic in a programming language of your choice

- Incorporate decision-making under uncertainty into your research
- Write a survey on a topic related to decision-making under uncertainty, and implement some methods related to this topic in a programming language of your choice
- Explore a small idea related to decision-making under uncertainty

- Incorporate decision-making under uncertainty into your research
- Write a survey on a topic related to decision-making under uncertainty, and implement some methods related to this topic in a programming language of your choice
- Explore a small idea related to decision-making under uncertainty
- Best-case scenario: When I was a Ph.D. student, some class projects turned into journal papers. E.g.,
 - Pareto Efficiency in Robust Optimization. D. Iancu and N. Trichakis.
 Management Science 60(1):130–147 (2014).
 - On polyhedral and second-order cone decompositions of semidefinite optimization problems. D. Bertsimas and R. Cory-Wright. OR Letters 48(1):78–85 (2020).
 - Probabilistic guarantees in robust optimization. D. Bertsimas, D. Den Hertog, and J. Pauphilet. SIAM Journal on Optimization 31(4):2893–2920 (2021).

Fair question!

Fair question!

A goal of an MRes/PhD is to put you in a position where you could be competitive for an academic job when you graduate (or after you do a postdoc, depending on the field). This gets tougher each year, because competition from other institutions is getting fiercer.

Fair question!

A goal of an MRes/PhD is to put you in a position where you could be competitive for an academic job when you graduate (or after you do a postdoc, depending on the field). This gets tougher each year, because competition from other institutions is getting fiercer.

Realistically, to be competitive in the current (Operations) market, you need an accepted paper and a few papers with revisions, all in top journals (e.g. OR/MS), by the time you are in the final year of your PhD (feel free to ask questions about this offline). For example, consider the number of publications from job market candidates we flew out this year.

Fair question!

A goal of an MRes/PhD is to put you in a position where you could be competitive for an academic job when you graduate (or after you do a postdoc, depending on the field). This gets tougher each year, because competition from other institutions is getting fiercer.

Realistically, to be competitive in the current (Operations) market, you need an accepted paper and a few papers with revisions, all in top journals (e.g. OR/MS), by the time you are in the final year of your PhD (feel free to ask questions about this offline). For example, consider the number of publications from job market candidates we flew out this year.

To be in the position they are in, you need to quickly pick up things that 15 years ago you might have learned across the first three years of an MRes/PhD. So, we will work hard this term to give you a good shot.

Grades and Philosophy Towards Amount of Content in Course

- Grades: They matter a lot at the undergraduate level, but I don't view them as important at the MRes/PhD level—you are here to learn how to do research, and you will be judged on how good your research is (I've *never* been asked for a transcript of my grad school grades, most faculty position applicants don't include their graduate level GPA). You should be here because you want to be here/learn because you want to learn.
- My philosophy in this class is to throw a lot of content at you, in hope some of it is useful. "Drinking from the firehose".
- We don't want to go so fast that you don't take anything in. So will
 periodically take temperature, adjust speed accordingly.

Grades and Philosophy Towards Amount of Content in Course

- Grades: They matter a lot at the undergraduate level, but I don't view them as important at the MRes/PhD level—you are here to learn how to do research, and you will be judged on how good your research is (I've *never* been asked for a transcript of my grad school grades, most faculty position applicants don't include their graduate level GPA). You should be here because you want to be here/learn because you want to learn.
- My philosophy in this class is to throw a lot of content at you, in hope some of it is useful. "Drinking from the firehose".
- We don't want to go so fast that you don't take anything in. So will
 periodically take temperature, adjust speed accordingly.

Should I be alarmed?

- About this class: no. Ok, if you are drowning at some points, grades will come out in the wash. Almost every MRes student who has taken this class has earned an A- grade or higher. And publishing well is what matters now, not grades.
- About the academic job market: panic doesn't help. But maybe..

Who am I?

Bio:

- B.E (Hons) in Engineering Science, University of Auckland
- Ph.D. in Operations Research, MIT, advised by Dimitris Bertsimas
- Postdoctoral fellow, IBM Research (2022-23)
- Assistant Professor of Analytics and Operations at Imperial Business School since July 2023
- Hobbies: running (training for a marathon), cycling, skiing.

Who am I?

Bio:

- B.E (Hons) in Engineering Science, University of Auckland
- Ph.D. in Operations Research, MIT, advised by Dimitris Bertsimas
- Postdoctoral fellow, IBM Research (2022-23)
- Assistant Professor of Analytics and Operations at Imperial Business School since July 2023
- Hobbies: running (training for a marathon), cycling, skiing.

Research:

- Broadly interested in optimization
- And its applications in machine learning, AI, and renewable energy
- Recently: a collaboration with OCP (a large fertilizer manufacturer) to fully decarbonize their production system by investing \$2 Bn USD in solar panels/batteries

Who am I?

Bio:

- B.E (Hons) in Engineering Science, University of Auckland
- Ph.D. in Operations Research, MIT, advised by Dimitris Bertsimas
- Postdoctoral fellow, IBM Research (2022-23)
- Assistant Professor of Analytics and Operations at Imperial Business School since July 2023
- Hobbies: running (training for a marathon), cycling, skiing.

Research:

- Broadly interested in optimization
- And its applications in machine learning, AI, and renewable energy
- Recently: a collaboration with OCP (a large fertilizer manufacturer) to fully decarbonize their production system by investing \$2 Bn USD in solar panels/batteries
 - Using basically the techniques we learn in this class!
- Ongoing: a collaboration with IBM to formulate the scientific method as a sequence of convex optimization problems

Who are you?

Good question! During next 10 mins, please email me at r.cory-wright@imperial.ac.uk, the following:

Who are you?

Good question! During next 10 mins, please email me at r.cory-wright@imperial.ac.uk, the following:

- Your name
- Your background in optimization and probability theory
- Why you are taking this class, and what you expect to get out of it
 - If you are auditing, whether you intend to complete assignments, etc.
- Whether there is anything in the syllabus that you weren't expecting to learn, or anything that isn't in the syllabus that you were expecting to learn
- How many hours a week you are expecting to spend on each of: reading, homework, additional exercises, project
- Anything else you think I should know (e.g., "I'll be away in week 5 because I'll be at a conference").

Who are you?

Good question! During next 10 mins, please email me at r.cory-wright@imperial.ac.uk, the following:

- Your name
- Your background in optimization and probability theory
- Why you are taking this class, and what you expect to get out of it
 - If you are auditing, whether you intend to complete assignments, etc.
- Whether there is anything in the syllabus that you weren't expecting to learn, or anything that isn't in the syllabus that you were expecting to learn
- How many hours a week you are expecting to spend on each of: reading, homework, additional exercises, project
- Anything else you think I should know (e.g., "I'll be away in week 5 because I'll be at a conference").

Thanks! I'll aim to take feedback on board as I prep the rest of the module

Class Overview and Motivation

 You have learned about optimization: a framework for, given a model of the world, making decisions that perform well for the model

- You have learned about optimization: a framework for, given a model of the world, making decisions that perform well for the model
- But, this model of the world only exists in our imagination

- You have learned about optimization: a framework for, given a model of the world, making decisions that perform well for the model
- But, this model of the world only exists in our imagination
- In reality, we constructed this model using data, which may be uncertain. Why?

- You have learned about optimization: a framework for, given a model of the world, making decisions that perform well for the model
- But, this model of the world only exists in our imagination
- In reality, we constructed this model using data, which may be uncertain. Why?
 - Measurement error

- You have learned about optimization: a framework for, given a model of the world, making decisions that perform well for the model
- But, this model of the world only exists in our imagination
- In reality, we constructed this model using data, which may be uncertain. Why?
 - Measurement error
 - Implementation error

- You have learned about optimization: a framework for, given a model of the world, making decisions that perform well for the model
- But, this model of the world only exists in our imagination
- In reality, we constructed this model using data, which may be uncertain. Why?
 - Measurement error
 - Implementation error
 - Data might not have been observed yet

- You have learned about optimization: a framework for, given a model of the world, making decisions that perform well for the model
- But, this model of the world only exists in our imagination
- In reality, we constructed this model using data, which may be uncertain. Why?
 - Measurement error
 - Implementation error
 - Data might not have been observed yet
 - The future distribution may not look like the past

Why This Class?

- You have learned about optimization: a framework for, given a model of the world, making decisions that perform well for the model
- But, this model of the world only exists in our imagination
- In reality, we constructed this model using data, which may be uncertain. Why?
 - Measurement error
 - Implementation error
 - Data might not have been observed yet
 - The future distribution may not look like the past
- If we want to guarantee that our optimization decisions perform well in the real world, we need to account for uncertainty in our models

Objectives:

 Introduce you to three different modeling paradigms for decision-making under uncertainty

Objectives:

- Introduce you to three different modeling paradigms for decision-making under uncertainty
- Provide background to explore the latest literature and apply it

Objectives:

- Introduce you to three different modeling paradigms for decision-making under uncertainty
- Provide background to explore the latest literature and apply it
- (Help) prepare you to perform research in topics involving decision-making under uncertainty + (Help) build background knowledge for performing research more broadly too

Objectives:

- Introduce you to three different modeling paradigms for decision-making under uncertainty
- Provide background to explore the latest literature and apply it
- (Help) prepare you to perform research in topics involving decision-making under uncertainty + (Help) build background knowledge for performing research more broadly too

Structure:

- 0. Background in Optimization and Probability (week 1)
- 1. Stochastic Optimization (weeks 2–4)
- 2. Robust Optimization (weeks 5-8)
- 3. Dynamic Optimization (weeks 9-10)

(Weeks 2-4)

 Model uncertainty by assuming uncertain parameters in the optimization problem follow a joint probability distribution, which we know

(Weeks 2-4)

- Model uncertainty by assuming uncertain parameters in the optimization problem follow a joint probability distribution, which we know
- Optimization over "random" parameters

(Weeks 2-4)

- Model uncertainty by assuming uncertain parameters in the optimization problem follow a joint probability distribution, which we know
- Optimization over "random" parameters
- Typically (aim to) minimize expected cost with respect to a joint probability distribution
 - Given decision variables x in a known feasible region \mathcal{X} , uncertain parameters ξ , and a known cost function $c(x, \xi)$, solve

$$\min_{\mathbf{x}\in\mathcal{X}}\mathbb{E}[c(\mathbf{x},\boldsymbol{\xi})]$$

(Weeks 2-4)

- Model uncertainty by assuming uncertain parameters in the optimization problem follow a joint probability distribution, which we know
- Optimization over "random" parameters
- Typically (aim to) minimize expected cost with respect to a joint probability distribution
 - Given decision variables x in a known feasible region \mathcal{X} , uncertain parameters ξ , and a known cost function $c(x, \xi)$, solve

$$\min_{\mathbf{x}\in\mathcal{X}}\mathbb{E}[c(\mathbf{x},\boldsymbol{\xi})]$$

• Appealing performance guarantees, but (a) might be hard to estimate joint probability distribution for ξ , (b) probability theory can be intractable in high-dimensional settings (e.g., expectations hard to compute)

(Weeks 5-8)

 Model uncertainty by assuming nature selects uncertain parameters adversarially, but is bounded in her capacity to be adversarial

(Weeks 5-8)

- Model uncertainty by assuming nature selects uncertain parameters adversarially, but is bounded in her capacity to be adversarial
- Often yields a deterministic equivalent with a few more variables, using techniques from duality

(Weeks 5–8)

- Model uncertainty by assuming nature selects uncertain parameters adversarially, but is bounded in her capacity to be adversarial
- Often yields a deterministic equivalent with a few more variables, using techniques from duality
- More tractable than stochastic optimization, but also more conservative (why?)

(Weeks 5-8)

- Model uncertainty by assuming nature selects uncertain parameters adversarially, but is bounded in her capacity to be adversarial
- Often yields a deterministic equivalent with a few more variables, using techniques from duality
- More tractable than stochastic optimization, but also more conservative (why?)
- We will also look at distributionally robust optimization (DRO), which aims to combine the performance guarantees of SO and the tractability of RO. Need to understand SO and RO to understand DRO, so we look at SO and RO first

Paradigm 3: Dynamic Optimization

 Model uncertainty using a stagewise independence assumption to improve tractability

Paradigm 3: Dynamic Optimization

- Model uncertainty using a stagewise independence assumption to improve tractability
- Popular in some parts of Operations Research and Management Science, especially where things are predictably uncertain

Paradigm 3: Dynamic Optimization

- Model uncertainty using a stagewise independence assumption to improve tractability
- Popular in some parts of Operations Research and Management Science, especially where things are predictably uncertain
- Key is to be able to describe the problem in a way where the future only depends on the current state, rather than the trajectory to get to the state, while ensuring the state is also compact
- A full class on dynamic optimization would take a term by itself–see the textbook by Bertsekas for more on this

 Most classic texts refer to "Linear Programming", "Stochastic Programming" etc. rather than "Linear Optimization Problem"

- Most classic texts refer to "Linear Programming", "Stochastic Programming" etc. rather than "Linear Optimization Problem"
- "Program" originally meant "ordered list of events to take place/procedures to be followed/schedule". Dantzig and others popularized the term in the 50s, before computers were widely available.

- Most classic texts refer to "Linear Programming", "Stochastic Programming" etc. rather than "Linear Optimization Problem"
- "Program" originally meant "ordered list of events to take place/procedures to be followed/schedule". Dantzig and others popularized the term in the 50s, before computers were widely available.
- Today, everyone thinks "program" means "computer-stuff". So I and lots of others use "optimization problem" instead, and you should too!

- Most classic texts refer to "Linear Programming", "Stochastic Programming" etc. rather than "Linear Optimization Problem"
- "Program" originally meant "ordered list of events to take place/procedures to be followed/schedule". Dantzig and others popularized the term in the 50s, before computers were widely available.
- Today, everyone thinks "program" means "computer-stuff". So I and lots of others use "optimization problem" instead, and you should too!
- If you see a textbook or journal article that uses "program" rather than "optimization problem", don't worry, it means the same thing.

Common Threads

ullet Class requires knowledge of optimization and probability o rest of lecture reviews optimization and probability

Common Threads

- \bullet Class requires knowledge of optimization and probability \to rest of lecture reviews optimization and probability
- Material in the lecture isn't directly examinable, only to the extent we use it in subsequent lectures
- Don't worry if you don't know all the material. You'll learn

Let's break for 5 minutes here.

Probability Bootcamp

Fundamentals of Probability

The notation/language in the next couple of slides might not be familiar.

The beginner should not be discouraged if he finds that he does

not have the prerequisites for reading the prerequisites

—Paul Halmos

The notation/language in the next couple of slides might not be familiar.

The beginner should not be discouraged if he finds that he does not have the prerequisites for reading the prerequisites

—Paul Halmos

• A class on probability is a prerequisite. But...

The notation/language in the next couple of slides might not be familiar.

The beginner should not be discouraged if he finds that he does not have the prerequisites for reading the prerequisites

—Paul Halmos

- A class on probability is a prerequisite. But...
- If you need to, you can read up on this in chapter 1 of Probability and Random Processes by Grimmett and Stirzaker

The notation/language in the next couple of slides might not be familiar.

The beginner should not be discouraged if he finds that he does not have the prerequisites for reading the prerequisites

—Paul Halmos

- A class on probability is a prerequisite. But...
- If you need to, you can read up on this in chapter 1 of Probability and Random Processes by Grimmett and Stirzaker
- We are about to go through the most useful conclusions of a first course on probability. So we will quote results, but not do any proofs

ullet Ω : a sample space of possible outcomes (e.g. from an experiment). Cardinality could be finite, countably infinite, or uncountably infinite

- ullet Ω : a sample space of possible outcomes (e.g. from an experiment). Cardinality could be finite, countably infinite, or uncountably infinite
- ullet ${\mathcal F}$ is a σ -algebra, i.e., a subset of 2^Ω such that

- Ω: a sample space of possible outcomes (e.g. from an experiment).
 Cardinality could be finite, countably infinite, or uncountably infinite
- \mathcal{F} is a σ -algebra, i.e., a subset of 2^{Ω} such that
 - $\bullet \ \varnothing \in \mathcal{F}$
 - If $\mathbf{A} \in \mathcal{F}$ then $\mathcal{A}^c \in \mathcal{F}$
 - If $\mathbf{A}_i \in \mathcal{F} \ \forall i \ \text{then} \ \cup_i \mathbf{A}_i \in \mathcal{F}$

- Ω: a sample space of possible outcomes (e.g. from an experiment).
 Cardinality could be finite, countably infinite, or uncountably infinite
- \mathcal{F} is a σ -algebra, i.e., a subset of 2^{Ω} such that
 - \bullet $\varnothing \in \mathcal{F}$
 - If $\mathbf{A} \in \mathcal{F}$ then $\mathcal{A}^c \in \mathcal{F}$
 - If $\mathbf{A}_i \in \mathcal{F} \ \forall i \ \text{then} \ \cup_i \mathbf{A}_i \in \mathcal{F}$
- \mathbb{P} a probability measure, which assigns a non-negative weight to each measurable subset $\mathbf{A} \in \mathcal{F}$ of Ω such that (Kolmogorov's Axioms)
 - $\mathbb{P}(\varnothing) = 0$
 - $\mathbb{P}(\Omega) = 1$
 - If $\mathbf{A}_i \in \mathcal{F}$ are disjoint then $\mathbb{P}(\cup_i \mathbf{A}_i) = \sum_i \mathbb{P}(\mathbf{A}_i)$

- Ω: a sample space of possible outcomes (e.g. from an experiment).
 Cardinality could be finite, countably infinite, or uncountably infinite
- \mathcal{F} is a σ -algebra, i.e., a subset of 2^{Ω} such that
 - \bullet $\varnothing \in \mathcal{F}$
 - If $\mathbf{A} \in \mathcal{F}$ then $\mathcal{A}^c \in \mathcal{F}$
 - If $\mathbf{A}_i \in \mathcal{F} \ \forall i \ \text{then} \ \cup_i \mathbf{A}_i \in \mathcal{F}$
- \mathbb{P} a probability measure, which assigns a non-negative weight to each measurable subset $\mathbf{A} \in \mathcal{F}$ of Ω such that (Kolmogorov's Axioms)
 - $\mathbb{P}(\varnothing) = 0$
 - $\mathbb{P}(\Omega) = 1$
 - If $A_i \in \mathcal{F}$ are disjoint then $\mathbb{P}(\cup_i A_i) = \sum_i \mathbb{P}(A_i)$

Probability Space

Let Ω be a sample space, $\mathcal F$ be a σ -algebra, and $\mathbb P$ be a probability measure defined on $(\Omega,\mathcal F)$. Then, we say that the triple $(\Omega,\mathcal F,\mathbb P)$ is a probability space

Probability Spaces: A Worked Example

Worked example of flipping a fair coin once: Outcomes are H and T

Probability Spaces: A Worked Example

Worked example of flipping a fair coin once: Outcomes are \boldsymbol{H} and \boldsymbol{T}

•
$$\Omega = \{H, T\}$$

Probability Spaces: A Worked Example

Worked example of flipping a fair coin once: Outcomes are H and T

- $\Omega = \{H, T\}$
- $\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}$

Probability Spaces: A Worked Example

Worked example of flipping a fair coin once: Outcomes are H and T

- $\Omega = \{H, T\}$
- $\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}$
- $\mathbb{P}: \mathbb{P}(\varnothing) = 0, \mathbb{P}(H) = \mathbb{P}(T) = 1/2, \mathbb{P}(\{H, T\}) = 1$

Probability Spaces: A Worked Example

Worked example of flipping a fair coin once: Outcomes are H and T

- $\Omega = \{H, T\}$
- $\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}$
- $\mathbb{P}: \mathbb{P}(\varnothing) = 0, \mathbb{P}(H) = \mathbb{P}(T) = 1/2, \mathbb{P}(\{H, T\}) = 1$

What about if we flip a fair coin twice?

Why do we Need σ -Algebras?

It's fairly intuitive that we need to define a sample space and a probability measure to discuss the possible outcomes of an experiment. But why do we need σ -algebras?

Why do we Need σ -Algebras?

It's fairly intuitive that we need to define a sample space and a probability measure to discuss the possible outcomes of an experiment. But why do we need σ -algebras?

Answer: There are non-measurable subsets of $[0,1]^n$, which are challenging to assign a probability to in a consistent way. We screen them out by assigning probabilities only to measurable subsets. However, this is mainly an issue when writing proofs, rather than in practice.

Random Variables

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A random variable \boldsymbol{X} is a real-valued function $\boldsymbol{X}: \Omega \to \mathbb{R}$ such that the set $\{\omega: \boldsymbol{X}(\omega) \leq c\}$ is \mathcal{F} -measurable for each $c \in \mathbb{R}$

Related Terminology

• We say that an event $\mathbf{A} \in \mathcal{F}$ occurs almost surely if it occurs with probability 1. Or equivalently, if the event does not occur with probability 0, i.e., $\mathbb{P}(\mathbf{A}^c) = 0$

Related Terminology

- We say that an event A∈ F occurs almost surely if it occurs with probability 1. Or equivalently, if the event does not occur with probability 0, i.e., P(A^c) = 0
 - But be careful with definitions! E.g., if we let X be a uniform random variable on [0,1] and $c \in [0,1]$ be a constant then the event $X \neq c$ almost surely occurs. But for any X, we can pick some $d \in [0,1]$ ex-post observing X such that X = d

Modes of Convergence

Why do we Need to Know About Modes of Convergence?

 In stochastic optimization, we often want to talk about a situation where we have access to a finite number of data points, which we take to be i.i.d. observations from a stochastic process

Why do we Need to Know About Modes of Convergence?

- In stochastic optimization, we often want to talk about a situation where we have access to a finite number of data points, which we take to be i.i.d. observations from a stochastic process
- Accordingly, we would like to talk about how fast estimators converge towards the "true" stochastic process

Why do we Need to Know About Modes of Convergence?

- In stochastic optimization, we often want to talk about a situation where we have access to a finite number of data points, which we take to be i.i.d. observations from a stochastic process
- Accordingly, we would like to talk about how fast estimators converge towards the "true" stochastic process
- Modes of convergence provide us with a rigorous way of talking about the speed of convergence

Almost Sure Convergence

Almost Sure Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\{X_i\}_{i \in \mathbb{N}}, X$ be random variables. Suppose that $A \in \mathcal{F}$ is a measurable set such that $\mathbb{P}(A) = 1$ and for all $\omega \in \mathcal{A}$ we have

$$\boldsymbol{X}_{i}(\omega) \rightarrow \boldsymbol{X}(\omega)$$
 as $i \rightarrow \infty$.

Then, we say that $X_i \stackrel{a.s.}{\to} X$.

Convergence in Probability Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X_i, X be random variables. Suppose that for every $\epsilon > 0$ we have that

$$\lim_{i\to\infty} \mathbb{P}(|\boldsymbol{X}_i-\boldsymbol{X}|\geq \epsilon)=0.$$

Then, we say that $X_i \stackrel{p_i}{\to} X$.

Convergence in Probability Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X_i, X be random variables. Suppose that for every $\epsilon > 0$ we have that

$$\lim_{i\to\infty}\mathbb{P}(|\boldsymbol{X}_i-\boldsymbol{X}|\geq\epsilon)=0.$$

Then, we say that $X_i \stackrel{p_i}{\to} X$.

Note: almost sure convergence implies convergence in probability, not necessarily other way around.

Convergence in Probability Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X_i, X be random variables. Suppose that for every $\epsilon > 0$ we have that

$$\lim_{i\to\infty}\mathbb{P}(|\boldsymbol{X}_i-\boldsymbol{X}|\geq\epsilon)=0.$$

Then, we say that $X_i \stackrel{p_i}{\to} X$.

Note: almost sure convergence implies convergence in probability, not necessarily other way around. Can you think of a counterexample?

Convergence in Probability Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X_i, X be random variables. Suppose that for every $\epsilon > 0$ we have that

$$\lim_{i\to\infty} \mathbb{P}(|\boldsymbol{X}_i - \boldsymbol{X}| \ge \epsilon) = 0.$$

Then, we say that $X_i \stackrel{p.}{\to} X$.

Note: almost sure convergence implies convergence in probability, not necessarily other way around. Can you think of a counterexample?

Let X_i be uniformly distributed on $\left[\frac{i}{2^k},\frac{i+1}{2^k}\right]$ where k is such that $k \leq \log_2(n)$ and $2^k + i = n$. Then, $X_1 \sim \mathcal{U}[0,1]$, $X_2 \sim \mathcal{U}[0,1/2], X_3 \sim \mathcal{U}[1/2,1], X_4 \sim \mathcal{U}[0,1/4]$ etc.

Convergence in Probability Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X_i, X be random variables. Suppose that for every $\epsilon > 0$ we have that

$$\lim_{i\to\infty}\mathbb{P}(|\boldsymbol{X}_i-\boldsymbol{X}|\geq\epsilon)=0.$$

Then, we say that $X_i \stackrel{p.}{\to} X$.

Note: almost sure convergence implies convergence in probability, not necessarily other way around. Can you think of a counterexample?

Let X_i be uniformly distributed on $\left[\frac{i}{2^k}, \frac{i+1}{2^k}\right]$ where k is such that $k \leq \log_2(n)$ and $2^k + i = n$. Then, $X_1 \sim \mathcal{U}[0, 1]$, $X_2 \sim \mathcal{U}[0, 1/2], X_3 \sim \mathcal{U}[1/2, 1], X_4 \sim \mathcal{U}[0, 1/4]$ etc.

Thus, $\mathbb{P}(|X_i| > \epsilon) \to 0$, but $X_i(\omega)$ does not converge to 0 almost surely.

Convergence in Distribution Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X_i, X be random variables with CDFs F_i, F . Suppose that for every x where F is continuous we have that

$$\lim_{i\to\infty}F_i(x)=F(x)$$

Then, we say that $X_i \stackrel{d}{\rightarrow} X$.

Convergence in Distribution Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X_i, X be random variables with CDFs F_i, F . Suppose that for every x where F is continuous we have that

$$\lim_{i\to\infty}F_i(x)=F(x)$$

Then, we say that $X_i \stackrel{d}{\rightarrow} X$.

Note: Convergence in probability implies convergence in distribution, but not necessarily the other way around.

Convergence in Distribution Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X_i, X be random variables with CDFs F_i, F . Suppose that for every x where F is continuous we have that

$$\lim_{i\to\infty}F_i(x)=F(x)$$

Then, we say that $X_i \stackrel{d}{\rightarrow} X$.

Note: Convergence in probability implies convergence in distribution, but not necessarily the other way around. Can you think of a counterexample?

Convergence in Distribution Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X_i, X be random variables with CDFs F_i, F . Suppose that for every x where F is continuous we have that

$$\lim_{i\to\infty}F_i(x)=F(x)$$

Then, we say that $X_i \stackrel{d}{\rightarrow} X$.

Note: Convergence in probability implies convergence in distribution, but not necessarily the other way around. Can you think of a counterexample?

Let $X_1 \sim \mathcal{N}(0,1)$, $X_i = (-1)^i X_1$. Then, X_i 's equal in distribution, but clearly do not converge in probability.

Limit Theorems and Concentration
Inequalities

Laws of Large Numbers

Strong Law of Large Numbers

Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables with $\mathbb{E}[|X_i|]<\infty$. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{a.s.}{\to} \mathbb{E}[\boldsymbol{X}_1] \tag{1}$$

Laws of Large Numbers

Strong Law of Large Numbers

Let $\{\pmb{X}_i\}_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables with $\mathbb{E}[|\pmb{X}_i|]<\infty$. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{\text{a.s.}}{\to} \mathbb{E}[\mathbf{X}_1] \tag{1}$$

Weak Law of Large Numbers

Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables with $\mathbb{E}[|X_i|]<\infty$. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{\rho}{\to} \mathbb{E}[\mathbf{X}_1] \tag{2}$$

Laws of Large Numbers

Strong Law of Large Numbers

Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables with $\mathbb{E}[|X_i|]<\infty$. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{\text{a.s.}}{\to} \mathbb{E}[\mathbf{X}_1] \tag{1}$$

Weak Law of Large Numbers

Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables with $\mathbb{E}[|X_i|]<\infty$. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\rho_i} \mathbb{E}[\mathbf{X}_1] \tag{2}$$

There exist versions of both laws that hold under weaker assumptions than i.i.d.ness, e.g., pairwise independence

Central Limit Theorem

Central Limit Theorem

Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables with finite mean μ and finite variance σ^2 . Then,

$$\lim_{n\to\infty} \frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} \mathcal{N}(0,1)$$
 (3)

I hear you say "But in practice, we have access to a finite amount of training data, so we will never actually attain these limits!"

I hear you say "But in practice, we have access to a finite amount of training data, so we will never actually attain these limits!"

Fair, SLLN/CLT provide good motivation for stochastic optimization, but we also need results that work with finite amounts of data

I hear you say "But in practice, we have access to a finite amount of training data, so we will never actually attain these limits!"

Fair, SLLN/CLT provide good motivation for stochastic optimization, but we also need results that work with finite amounts of data

Berry-Esseen Theorem

Let $\{m{X}_i\}_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables with $\mathbb{E}[m{X}_i]=0$, $\mathbb{E}[m{X}_i^2]=\sigma^2<\infty$, $\mathbb{E}[|m{X}|^3]=\rho<\infty$. Then, define $Y_n:=\frac{\sum_{i=1}^n X_i}{n}$ with F_n the CDF of $\frac{Y_n\sqrt{n}}{\sigma}$. There exists some positive constant C<0.4748 such that

$$|F_n(x) - \Phi(x)| \le \frac{C\rho}{\sigma^3 \sqrt{n}},$$
 (4)

where Φ is the CDF of a standard normal

I hear you say "But in practice, we have access to a finite amount of training data, so we will never actually attain these limits!"

Fair, SLLN/CLT provide good motivation for stochastic optimization, but we also need results that work with finite amounts of data

Berry-Esseen Theorem

Let $\{m{X}_i\}_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables with $\mathbb{E}[m{X}_i]=0$, $\mathbb{E}[m{X}_i^2]=\sigma^2<\infty$, $\mathbb{E}[|m{X}|^3]=\rho<\infty$. Then, define $Y_n:=\frac{\sum_{i=1}^n X_i}{n}$ with F_n the CDF of $\frac{Y_n\sqrt{n}}{\sigma}$. There exists some positive constant C<0.4748 such that

$$|F_n(x) - \Phi(x)| \le \frac{C\rho}{\sigma^3 \sqrt{n}},$$
 (4)

where Φ is the CDF of a standard normal

This result says that sample averages behave more and more like normal distributions as n gets larger

For any non-negative random variable \boldsymbol{X} and any $t \in \mathbb{R}_+$, we have

Markov's Inequality

$$\mathbb{P}(\boldsymbol{X} > t) \le \min\left(1, \frac{\mathbb{E}[\boldsymbol{X}]}{t}\right) \tag{5}$$

For any non-negative random variable \boldsymbol{X} and any $t \in \mathbb{R}_+$, we have

Markov's Inequality

$$\mathbb{P}(\boldsymbol{X} > t) \leq \min\left(1, \frac{\mathbb{E}[\boldsymbol{X}]}{t}\right) \tag{5}$$

A weak but very general result about likelihood of "extreme" events

For any non-negative random variable $oldsymbol{X}$ and any $t \in \mathbb{R}_+$, we have

Markov's Inequality

$$\mathbb{P}(\mathbf{X} > t) \le \min\left(1, \frac{\mathbb{E}[\mathbf{X}]}{t}\right) \tag{5}$$

A weak but very general result about likelihood of "extreme" events How would we prove this?

For any non-negative random variable $oldsymbol{X}$ and any $t \in \mathbb{R}_+$, we have

Markov's Inequality

$$\mathbb{P}(\mathbf{X} > t) \le \min\left(1, \frac{\mathbb{E}[\mathbf{X}]}{t}\right) \tag{5}$$

A weak but very general result about likelihood of "extreme" events

How would we prove this?

Let
$$\mathbb{E}[X] = \mathbb{P}(X > a)\mathbb{E}[X|X > a] + \mathbb{P}(X \le a)\mathbb{E}[X|X \le a].$$

Therefore,
$$\mathbb{E}[X] \geq \mathbb{P}(X > a)\mathbb{E}[X|X > a] \geq a\mathbb{P}(X > a)$$

Chebyshev's Inequality

For any random variable ${\pmb X}$ with finite variance σ^2 and expected value μ

Chebyshev's Inequality

$$\mathbb{P}(|\mathbf{X} - \mu| \ge t\sigma) \le \min(1, \frac{1}{t^2}) \tag{6}$$

Chebyshev's Inequality

For any random variable ${\pmb X}$ with finite variance σ^2 and expected value μ

Chebyshev's Inequality

$$\mathbb{P}(|\mathbf{X} - \mu| \ge t\sigma) \le \min(1, \frac{1}{t^2}) \tag{6}$$

This is a slightly stronger result about the likelihood of extreme events

Hoeffding's Inequality

For a sequence of i.i.d. Bernoulli(p) random variables X_i we have

Hoeffding's Inequality

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - np\right| \ge nt\right) \le 2\exp\left(-2nt^{2}\right) \quad \forall t > 0$$
 (7)

Hoeffding's Inequality

For a sequence of i.i.d. Bernoulli(p) random variables X_i we have

Hoeffding's Inequality

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - np\right| \ge nt\right) \le 2\exp\left(-2nt^{2}\right) \quad \forall t > 0$$
 (7)

Conclusion: i.i.d.ness lets us concentrate uncertainty exponentially

McDiarmid's Inequality

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function of n independent random variables X_i for each i, which almost surely have ranges \mathcal{X}_i . Let f satisfy the bounded differences condition

$$\sup_{\bar{x}\in\mathcal{X}_i}|f(x_1,\ldots,x_n)-f(x_1,\ldots,x_{i-1},\bar{x},x_{i+1},\ldots,x_n)|\leq c_i.$$

McDiarmid's Inequality

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function of n independent random variables X_i for each i, which almost surely have ranges \mathcal{X}_i . Let f satisfy the bounded differences condition

$$\sup_{\bar{x}\in\mathcal{X}_i}|f(x_1,\ldots,x_n)-f(x_1,\ldots,x_{i-1},\bar{x},x_{i+1},\ldots,x_n)|\leq c_i.$$

Then, *f* satisfies the inequality:

McDiarmid's Inequality

$$\mathbb{P}\left(|f(\boldsymbol{X}_1,\ldots,\boldsymbol{X}_n) - \mathbb{E}[f(\boldsymbol{X}_1,\ldots,\boldsymbol{X}_n)]| \ge \epsilon\right) \le 2\exp\left(\frac{-2\epsilon^2}{\sum_{i=1}^n c_i^2}\right)$$
(8)

McDiarmid's Inequality

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function of n independent random variables X_i for each i, which almost surely have ranges \mathcal{X}_i . Let f satisfy the bounded differences condition

$$\sup_{\bar{\mathbf{x}}\in\mathcal{X}_i}|f(x_1,\ldots,x_n)-f(x_1,\ldots,x_{i-1},\bar{\mathbf{x}},x_{i+1},\ldots,x_n)|\leq c_i.$$

Then, *f* satisfies the inequality:

McDiarmid's Inequality

$$\mathbb{P}\left(|f(\boldsymbol{X}_1,\ldots\boldsymbol{X}_n) - \mathbb{E}[f(\boldsymbol{X}_1,\ldots\boldsymbol{X}_n)]| \ge \epsilon\right) \le 2\exp\left(\frac{-2\epsilon^2}{\sum_{i=1}^n c_i^2}\right)$$
(8)

Conclusion: functions of independent and bounded random variables concentrate exponentially

We just "covered" quite a lot of content! Let's break for 10 minutes here.

Optimization Bootcamp

Basic Terminology: What is an Optimization Problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{9}$$

s.t.
$$f_i(\mathbf{x}) \leq 0$$
, $\forall i \in [m_1]$, (10)

$$h_j(\mathbf{x}) = 0, \quad \forall j \in [m_2]. \tag{11}$$

Basic Terminology: What is an Optimization Problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{9}$$

s.t.
$$f_i(\mathbf{x}) \leq 0, \quad \forall i \in [m_1],$$
 (10)

$$h_j(\mathbf{x}) = 0, \quad \forall j \in [m_2]. \tag{11}$$

- Decision variables: $\mathbf{x} \in \mathbb{R}^n$ is the vector to be chosen
- Objective function: *f* is to be minimized
- Inequality constraints: f_i , equality constraints: h_j

Basic Terminology: What is an Optimization Problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{9}$$

s.t.
$$f_i(\mathbf{x}) \leq 0$$
, $\forall i \in [m_1]$, (10)

$$h_i(\mathbf{x}) = 0, \quad \forall j \in [m_2]. \tag{11}$$

- Decision variables: $\mathbf{x} \in \mathbb{R}^n$ is the vector to be chosen
- Objective function: *f* is to be minimized
- Inequality constraints: f_i , equality constraints: h_i

Variations: maximize objective, multiple objectives

How Expressive is Optimization?

We can phrase almost anything as an optimization problem.

E.g., Fermat's Last Theorem

$$\min_{x,y,z,n} (x^n + y^n - z^n)^2$$

s.t. $x, y, z \ge 1, n \ge 3, x, y, z, n$ Integer.

How Expressive is Optimization?

We can phrase almost anything as an optimization problem.

E.g., Fermat's Last Theorem

$$\begin{aligned} & \min_{x,y,z,n} & \left(x^n + y^n - z^n\right)^2 \\ & \text{s.t.} & x,y,z \geq 1, n \geq 3, x,y,z, n \text{ Integer.} \end{aligned}$$

A good question to ask is "what optimization problems can we solve?"

What is Tractable?

Attempt #1: linear optimization problems are tractable —we can solve them via the simplex method or IPMs

Attempt #1: linear optimization problems are tractable —we can solve them via the simplex method or IPMs

From "In Pursuit of the Traveling Salesman" by Bill Cook

News of the general linear-programming model, and the simplex algorithm for its solution, was delivered by George Dantzig in 1948 at a meeting held at the University of Wisconsin. The event was a defining moment for Dantzig, who has described often its proceedings.

Attempt #1: linear optimization problems are tractable —we can solve them via the simplex method or IPMs

From "In Pursuit of the Traveling Salesman" by Bill Cook

News of the general linear-programming model, and the simplex algorithm for its solution, was delivered by George Dantzig in 1948 at a meeting held at the University of Wisconsin. The event was a defining moment for Dantzig, who has described often its proceedings.

Like many good stories, repeated telling may have shifted a few details over the years, but all versions capture the spirit of a nervous rising star facing a large and distinguished group of mathematicians and economists. During the discussion following Dantzig's lecture, Harold Hotelling, great in both academic stature and physical size, rose from his seat, stated simply, "But we all know the world is nonlinear," and sat down. Dantzig was lost for a reply to such a sweeping criticism.

Attempt #1: linear optimization problems are tractable —we can solve them via the simplex method or IPMs

From "In Pursuit of the Traveling Salesman" by Bill Cook

Suddenly another hand in the audience was raised. It was John von Neumann. "Mr. Chairman, Mr. Chairman," he said, "if the speaker does not mind, I would like to reply for him." Naturally I agreed. von Neumann said: "The speaker titled his talk 'linear programming' and carefully stated his axioms. If you have an application that satisfies the axioms, well use it. If it does not, then don't."

Attempt #1: linear optimization problems are tractable —we can solve them via the simplex method or IPMs

From "In Pursuit of the Traveling Salesman" by Bill Cook

Suddenly another hand in the audience was raised. It was John von Neumann. "Mr. Chairman, Mr. Chairman," he said, "if the speaker does not mind, I would like to reply for him." Naturally I agreed. von Neumann said: "The speaker titled his talk 'linear programming' and carefully stated his axioms. If you have an application that satisfies the axioms, well use it. If it does not, then don't."

Conclusions:

• Dantzig and von Neumann are right: Linear is tractable

Attempt #1: linear optimization problems are tractable —we can solve them via the simplex method or IPMs

From "In Pursuit of the Traveling Salesman" by Bill Cook

Suddenly another hand in the audience was raised. It was John von Neumann. "Mr. Chairman, Mr. Chairman," he said, "if the speaker does not mind, I would like to reply for him." Naturally I agreed. von Neumann said: "The speaker titled his talk 'linear programming' and carefully stated his axioms. If you have an application that satisfies the axioms, well use it. If it does not, then don't."

Conclusions:

- Dantzig and von Neumann are right: Linear is tractable
- Hotelling is right (Dantzig later admits as much): The world is nonlinear, and saying "linear is tractable" is not sufficient

Attempt #2: Convex Optimization Problems Are Tractable

Attempt #2: Convex Optimization Problems Are Tractable

R. T. Rockafellar (1993)

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

Attempt #2: Convex Optimization Problems Are Tractable

R. T. Rockafellar (1993)

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

This quote is put up quite often at conferences . . .

...usually, to justify using a heuristic on a non-convex problem

Attempt #2: Convex Optimization Problems Are Tractable

R. T. Rockafellar (1993)

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

This quote is put up quite often at conferences . . .

... usually, to justify using a heuristic on a non-convex problem

Let's take it to be true for a few slides

Convex Functions

Definition

A function $f: \mathbb{R}^n \mapsto \mathbb{R}$ is convex if for each $x, y \in \mathbb{R}^n$ and every $\lambda \in [0, 1]$ we have that

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

If f is differentiable, an equivalent definition is:

A function $f: \mathbb{R}^n \mapsto \mathbb{R}$ is convex if for each $x, y \in \mathbb{R}^n$ we have that:

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x).$$

If f is twice differentiable, an equivalent definition is:

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if its hessian, $\nabla^2 f(x)$ is positive semidefinite over the entire domain

Convex Functions

Definition

A function $f: \mathbb{R}^n \mapsto \mathbb{R}$ is convex if for each $x, y \in \mathbb{R}^n$ and every $\lambda \in [0, 1]$ we have that

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

If f is differentiable, an equivalent definition is:

A function $f: \mathbb{R}^n \mapsto \mathbb{R}$ is convex if for each $x, y \in \mathbb{R}^n$ we have that:

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x).$$

If f is twice differentiable, an equivalent definition is:

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if its hessian, $\nabla^2 f(x)$ is positive semidefinite over the entire domain

I like to think of this as "convex=holds water"

Classify the following sets as convex or non-convex

• $\{x: x \in [0,1]^n\}$

Classify the following sets as convex or non-convex

- $\{x: x \in [0,1]^n\}$
- $\{(x,\theta)\in\mathbb{R}^2:\theta\geq x^3\}$
- Set of prime numbers

Classify the following sets as convex or non-convex

- $\{x : x \in [0,1]^n\}$
- $\{(x,\theta)\in\mathbb{R}^2:\theta\geq x^3\}$
- Set of prime numbers
- The dual cone $C^* := \{ \boldsymbol{y} : \boldsymbol{x}^{\top} \boldsymbol{y} \geq 0 \ \forall \boldsymbol{x} \in C \}$ for an arbitrary set C.
- The polar set $C^o := \{ \boldsymbol{y} : \boldsymbol{x}^\top \boldsymbol{y} \leq 1 \ \forall \boldsymbol{x} \in C \}$ for an arbitrary set C.
- Set of rank-one matrices $\{ {\it xx}^{ op} : {\it x} \in \mathbb{R}^n \}$

Classify the following sets as convex or non-convex

- $\{x : x \in [0,1]^n\}$
- $\{(x,\theta)\in\mathbb{R}^2:\theta\geq x^3\}$
- Set of prime numbers
- The dual cone $C^* := \{ \boldsymbol{y} : \boldsymbol{x}^{\top} \boldsymbol{y} \geq 0 \ \forall \boldsymbol{x} \in C \}$ for an arbitrary set C.
- The polar set $C^o := \{ \mathbf{y} : \mathbf{x}^{\top} \mathbf{y} \leq 1 \ \forall \mathbf{x} \in C \}$ for an arbitrary set C.
- Set of rank-one matrices $\{xx^\top:x\in\mathbb{R}^n\}$

For more practice on this, Chapter 2 of Boyd and Vandenberghe (2004).

An Exercise in Convexity: Solutions

Classify the following sets as convex or non-convex

- $\{x : x \in [0,1]^n\}$: Convex
- $\{(x,\theta)\in\mathbb{R}^2:\theta\geq x^3\}$
 - x^3 is quasiconvex but nonconvex, so this set is not convex.
- Set of prime numbers: Non-convex (3 and 5 are prime, 4 is not).
- The dual cone $C^* := \{ \boldsymbol{y} : \boldsymbol{x}^\top \boldsymbol{y} \ge 0 \ \forall \boldsymbol{x} \in C \}$ for an arbitrary set C: convex (verify definition of convexity)
- The polar set $C^o := \{ y : x^\top y \le 1 \ \forall x \in C \}$ for an arbitrary set C: convex (verify definition of convexity)
- Set of rank-one matrices $\{xx^\top:x\in\mathbb{R}^n\}$: Non-convex (aa^\top) and bb^\top are rank one, but $\frac{1}{2}(aa^\top+bb^\top)$ may not be)

For more practice on this, Chapter 2 of Boyd and Vandenberghe (2004).

$$\min_{x} f(x)$$
s.t. $g(x) \le q$

Convex optimization is relatively "easy" because of three key features:

$$\min_{x} f(x)$$

s.t. $g(x) \le q$

Convex optimization is relatively "easy" because of three key features:

• Convex Feasible Set: The feasible set $\{x \mid g(x) \leq q\}$ is a convex set, which has many good properties we like:

(a) A Convex Set

(b) A Non-Convex Set

$$\min_{x} f(x)$$

s.t. $g(x) \le q$

Convex optimization is relatively "easy" because of three key features:

• Convex Feasible Set: The feasible set $\{x \mid g(x) \leq q\}$ is a convex set, which has many good properties we like:

(a) A Convex Set

(b) A Non-Convex Set

• Local-Global Correspondence: A local optimum of f(x) is guaranteed to be the global optimum (why?)

$$\min_{x} f(x)$$

s.t. $g(x) \le q$

Convex optimization is relatively "easy" because of three key features:

• Convex Feasible Set: The feasible set $\{x \mid g(x) \leq q\}$ is a convex set, which has many good properties we like:

(a) A Convex Set

(b) A Non-Convex Set

- Local-Global Correspondence: A local optimum of f(x) is guaranteed to be the global optimum (why?)
- **Strong Duality**: Convex optimization also satisfies strong duality (subject to a technical condition called Slater's condition)

Rockafellar, Revisited

R. T. Rockafellar (1993)

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

What do we really think of this quote?

R. T. Rockafellar (1993)

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

What do we really think of this quote?

Any problem can be rewritten as a convex problem!

R. T. Rockafellar (1993)

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

- Any problem can be rewritten as a convex problem!
 - Rewrite in epigraph form
 - Replace feasible region with its convex hull

R. T. Rockafellar (1993)

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

- Any problem can be rewritten as a convex problem!
 - Rewrite in epigraph form
 - Replace feasible region with its convex hull
- Verifying the convexity of a function is NP-hard

R. T. Rockafellar (1993)

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

- Any problem can be rewritten as a convex problem!
 - Rewrite in epigraph form
 - Replace feasible region with its convex hull
- Verifying the convexity of a function is NP-hard
- Not all convex sets can be efficiently optimized over (copositive matrices, non-negative polynomials)

R. T. Rockafellar (1993)

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

- Any problem can be rewritten as a convex problem!
 - Rewrite in epigraph form
 - Replace feasible region with its convex hull
- Verifying the convexity of a function is NP-hard
- Not all convex sets can be efficiently optimized over (copositive matrices, non-negative polynomials)
- Some non-convex problems can be efficiently solved in practice (TSPs, computing the leading eigenvector of a matrix)

R. T. Rockafellar (1993)

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

- Any problem can be rewritten as a convex problem!
 - Rewrite in epigraph form
 - Replace feasible region with its convex hull
- Verifying the convexity of a function is NP-hard
- Not all convex sets can be efficiently optimized over (copositive matrices, non-negative polynomials)
- Some non-convex problems can be efficiently solved in practice (TSPs, computing the leading eigenvector of a matrix)
- Conclusion: Rockafellar is closer than attempt #1, but wrong

This is a tricky question, especially because the "real" answer keeps changing as solvers and our algorithms improve. An attempt:

• A problem is theoretically tractable if it is solvable in polynomial time

- A problem is theoretically tractable if it is solvable in polynomial time
- A problem is practically tractable if it is solvable in a reasonable amount of time at instance sizes that we care about in practice

- A problem is theoretically tractable if it is solvable in polynomial time
- A problem is practically tractable if it is solvable in a reasonable amount of time at instance sizes that we care about in practice
- Generally speaking, polynomially solvable problems are tractable, integer problems are tractable, and polynomially solvable problems remain tractable if we introduce integer variables

- A problem is theoretically tractable if it is solvable in polynomial time
- A problem is practically tractable if it is solvable in a reasonable amount of time at instance sizes that we care about in practice
- Generally speaking, polynomially solvable problems are tractable, integer problems are tractable, and polynomially solvable problems remain tractable if we introduce integer variables
- ullet NP-hard continuous problems are not (yet) practically tractable, but (in my opinion, others might disagree) will be in ten years time \to Gurobi released a spatial branch-and-bound solver for them in 2019

- A problem is theoretically tractable if it is solvable in polynomial time
- A problem is practically tractable if it is solvable in a reasonable amount of time at instance sizes that we care about in practice
- Generally speaking, polynomially solvable problems are tractable, integer problems are tractable, and polynomially solvable problems remain tractable if we introduce integer variables
- ullet NP-hard continuous problems are not (yet) practically tractable, but (in my opinion, others might disagree) will be in ten years time \to Gurobi released a spatial branch-and-bound solver for them in 2019
- In the remaining part of this lecture, we'll go through classes of practically tractable problems that often show up in practice

Convex Conic Optimization

Linear Optimization

A generic linear optimization problem:

$$egin{array}{ll} \min_{\mathbf{x} \in \mathbb{R}^n} & \mathbf{c}^{ op} \mathbf{x} \\ \mathrm{s.t.} & \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{D} \mathbf{x} = \mathbf{d}. \end{array}$$

Modeling power:

- Maximum of t linear functions: $t \ge c_i + \boldsymbol{d}_i^{\top} \boldsymbol{x} \ \forall i \in [n]$
- ℓ_1 norm: $\|\mathbf{x}\|_1 \leq t \iff \exists \mathbf{u} : -\mathbf{u} \leq \mathbf{x} \leq \mathbf{u}, \mathbf{e}^\top \mathbf{u} \leq t$

Linear Optimization

A generic linear optimization problem:

$$egin{array}{ll} \min_{\mathbf{x} \in \mathbb{R}^n} & \mathbf{c}^{ op} \mathbf{x} \ & ext{s.t.} & \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{D} \mathbf{x} = \mathbf{d}. \end{array}$$

Modeling power:

- Maximum of t linear functions: $t \ge c_i + \boldsymbol{d}_i^{\top} \boldsymbol{x} \ \forall i \in [n]$
- ℓ_1 norm: $\|\mathbf{x}\|_1 \leq t \iff \exists \mathbf{u} : -\mathbf{u} \leq \mathbf{x} \leq \mathbf{u}, \mathbf{e}^\top \mathbf{u} \leq t$

Why is this useful?

- Can certify infeasibility of a linear system using Farkas's Lemma
- Can solve even massive LOs with modern solvers

Linear Optimization

A generic linear optimization problem:

$$egin{array}{ll} \min_{\mathbf{x} \in \mathbb{R}^n} & \mathbf{c}^{ op} \mathbf{x} \ & ext{s.t.} & \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{D} \mathbf{x} = \mathbf{d}. \end{array}$$

Modeling power:

- Maximum of t linear functions: $t \ge c_i + \boldsymbol{d}_i^{\top} \boldsymbol{x} \ \forall i \in [n]$
- ℓ_1 norm: $\|\mathbf{x}\|_1 \le t \iff \exists \mathbf{u} : -\mathbf{u} \le \mathbf{x} \le \mathbf{u}, \mathbf{e}^\top \mathbf{u} \le t$

Why is this useful?

- Can certify infeasibility of a linear system using Farkas's Lemma
- Can solve even massive LOs with modern solvers

How to solve?

- Mosek or Gurobi (simplex or interior point method)
- Exercise: What is the dual of this LO? (Do on board)

Conic Optimization

A generic conic optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathcal{K}$.

Where K is a closed, convex, pointed, and solid cone

- Convex cone: $x, y \in \mathcal{K}$ implies $\lambda x + \mu y \in \mathcal{K}$ for all $\lambda, \mu \geq 0$
- Pointed: $\mathcal{K} \cap \{-\mathcal{K}\} = \{0\}$
- Solid: $\exists \mathbf{x} \in \mathcal{K}, \epsilon > 0 : \forall \mathbf{y}, \|\mathbf{x} \mathbf{y}\| \le \epsilon \implies \mathbf{y} \in \mathcal{K}$

Conic Optimization

A generic conic optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathcal{K}$.

Where \mathcal{K} is a closed, convex, pointed, and solid cone

- Convex cone: $x, y \in \mathcal{K}$ implies $\lambda x + \mu y \in \mathcal{K}$ for all $\lambda, \mu \geq 0$
- Pointed: $\mathcal{K} \cap \{-\mathcal{K}\} = \{0\}$
- Solid: $\exists x \in \mathcal{K}, \epsilon > 0 : \forall y, ||x y|| \le \epsilon \implies y \in \mathcal{K}$
- We usually want K to be a Cartesian product of the non-negative orthant, second-order cone, semidefinite cone, exponential cone, and power cone, so that it can be solved using the Mosek solver

Conic Optimization

A generic conic optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathcal{K}$.

Where \mathcal{K} is a closed, convex, pointed, and solid cone

- Convex cone: $x, y \in \mathcal{K}$ implies $\lambda x + \mu y \in \mathcal{K}$ for all $\lambda, \mu \geq 0$
- Pointed: $\mathcal{K} \cap \{-\mathcal{K}\} = \{0\}$
- Solid: $\exists x \in \mathcal{K}, \epsilon > 0 : \forall y, ||x y|| \le \epsilon \implies y \in \mathcal{K}$
- ullet We usually want ${\cal K}$ to be a Cartesian product of the non-negative orthant, second-order cone, semidefinite cone, exponential cone, and power cone, so that it can be solved using the Mosek solver
- Because some other convex cones are not tractable (copositive)

A generic second-order cone problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \mathbf{c}^\top \mathbf{x}$$
s.t.
$$\|\mathbf{A}_i^\top \mathbf{x} + b_i\|_2 \le c_i^\top \mathbf{x} + d_i, \ \forall i \in [m], \ \mathbf{D} \mathbf{x} = \mathbf{d}.$$

A generic second-order cone problem:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} & \mathbf{c}^{\top} \mathbf{x} \\ & \text{s.t.} & & \|\mathbf{A}_i^{\top} \mathbf{x} + b_i\|_2 \leq c_i^{\top} \mathbf{x} + d_i, \ \forall i \in [m], \ \mathbf{D} \mathbf{x} = \mathbf{d}. \end{aligned}$$

Modeling power:

- Linear inequalities
- Convex quadratics
- Portfolio risk and chance constraints

A generic second-order cone problem:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} & \mathbf{c}^{\top} \mathbf{x} \\ & \text{s.t.} & & \|\mathbf{A}_i^{\top} \mathbf{x} + b_i\|_2 \leq c_i^{\top} \mathbf{x} + d_i, \ \forall i \in [m], \ \mathbf{D} \mathbf{x} = \mathbf{d}. \end{aligned}$$

Modeling power:

- Linear inequalities
- Convex quadratics
- Portfolio risk and chance constraints

Why is this useful?

Most general continuous problem we can solve to optimality at scale

A generic second-order cone problem:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} & \mathbf{c}^{\top} \mathbf{x} \\ & \text{s.t.} & & \|\mathbf{A}_i^{\top} \mathbf{x} + b_i\|_2 \leq c_i^{\top} \mathbf{x} + d_i, \ \forall i \in [m], \ \mathbf{D} \mathbf{x} = \mathbf{d}. \end{aligned}$$

Modeling power:

- Linear inequalities
- Convex quadratics
- Portfolio risk and chance constraints

Why is this useful?

Most general continuous problem we can solve to optimality at scale

How to solve?

Mosek or Gurobi (interior point method)

Modeling Power: Rotated Second-order Cone Constraints

A large class of problems can be cast as second-order cone problems since

(a)
$$x^2 \le yz, y, z \ge 0 \iff \left\| \begin{pmatrix} 2x \\ y - z \end{pmatrix} \right\|_2 \le y + z,$$

(b)
$$\mathbf{x}_i^{\top} \mathbf{P}_i \mathbf{x} + 2 \mathbf{q}_i^{\top} \mathbf{x} + r_i \leq 0 \iff \left\| \mathbf{P}_i^{\frac{1}{2}} \mathbf{x} + \mathbf{P}_i^{\frac{-1}{2}} \mathbf{q}_i \right\|_2 \leq \left(\mathbf{q}_i^{\top} \mathbf{P}_i^{-1} \mathbf{q}_i - r_i \right)^{\frac{1}{2}}$$

(c)
$$t \ge x^{\frac{3}{2}}, x \ge 0 \iff \exists s : 2st \ge x^2, \frac{1}{4}x \ge s^2$$

where we assume $P_i > 0$ in (b).

Modeling Power: Rotated Second-order Cone Constraints

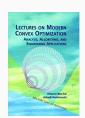
A large class of problems can be cast as second-order cone problems since

(a)
$$x^2 \le yz, y, z \ge 0 \iff \left\| \begin{pmatrix} 2x \\ y - z \end{pmatrix} \right\|_2 \le y + z,$$

(b)
$$\mathbf{x}_i^{\top} \mathbf{P}_i \mathbf{x} + 2 \mathbf{q}_i^{\top} \mathbf{x} + r_i \leq 0 \iff \left\| \mathbf{P}_i^{\frac{1}{2}} \mathbf{x} + \mathbf{P}_i^{\frac{-1}{2}} \mathbf{q}_i \right\|_2 \leq \left(\mathbf{q}_i^{\top} \mathbf{P}_i^{-1} \mathbf{q}_i - r_i \right)^{\frac{1}{2}}$$

(c)
$$t \ge x^{\frac{3}{2}}, x \ge 0 \iff \exists s : 2st \ge x^2, \frac{1}{4}x \ge s^2$$

where we assume $P_i > 0$ in (b). And other problems! Places to look:



A generic semidefinite problem:

$$egin{array}{ll} \min_{m{X} \in \mathcal{S}^n_+} & \langle m{C}, m{X}
angle \ & ext{s.t.} & \langle m{A}_i, m{X}
angle = b_i, \; orall i \in [m]. \end{array}$$

A generic semidefinite problem:

$$egin{array}{ll} \min \limits_{m{X} \in \mathcal{S}_{+}^{n}} & \langle m{C}, m{X}
angle \ & ext{s.t.} & \langle m{A}_{i}, m{X}
angle = b_{i}, \; orall i \in [m]. \end{array}$$

Modeling power:

- Linear matrix inequalities
- Eigenvalues and sums of eigenvalues

A generic semidefinite problem:

$$egin{array}{ll} \min_{m{X} \in \mathcal{S}_+^n} & \langle m{C}, m{X}
angle \ & ext{s.t.} & \langle m{A}_i, m{X}
angle = b_i, \; orall i \in [m]. \end{array}$$

Modeling power:

- Linear matrix inequalities
- Eigenvalues and sums of eigenvalues

Why is this useful?

- Most general problem can solve to optimality at moderate sizes
- Lots of non-convex problems admit quite tight semidefinite relaxations—useful for getting upper bounds

A generic semidefinite problem:

$$egin{array}{ll} \min_{m{X} \in \mathcal{S}_+^n} & \langle m{C}, m{X}
angle \ & ext{s.t.} & \langle m{A}_i, m{X}
angle = b_i, \; orall i \in [m]. \end{array}$$

Modeling power:

- Linear matrix inequalities
- Eigenvalues and sums of eigenvalues

Why is this useful?

- Most general problem can solve to optimality at moderate sizes
- Lots of non-convex problems admit quite tight semidefinite relaxations—useful for getting upper bounds

How to solve?

• Mosek (interior point method).

Modeling Power: Semidefinite Constraints

A large class of problems can be cast as semidefinite problems since

(a)
$$\lambda_{\mathsf{max}}(\boldsymbol{X}) \leq t \iff \boldsymbol{X} \leq t\mathbb{I}$$

(b)
$$\sum_{i=1}^{\kappa} \lambda_i(\boldsymbol{X}) \leq t \iff \exists \theta, \boldsymbol{U} : t \geq k\theta + \operatorname{tr}(\boldsymbol{U}), \theta \mathbb{I} + \boldsymbol{U} \succeq \boldsymbol{X}, \boldsymbol{U} \succeq \boldsymbol{0}$$

(c)
$$\|\boldsymbol{X}\|_* \leq t \iff \exists \boldsymbol{U}, \boldsymbol{V} : \begin{pmatrix} \boldsymbol{U} & \boldsymbol{X} \\ \boldsymbol{X}^\top & \boldsymbol{V} \end{pmatrix} \succeq \boldsymbol{0}, 2t \geq \operatorname{tr}(\boldsymbol{U}) + \operatorname{tr}(\boldsymbol{V})$$

Modeling Power: Semidefinite Constraints

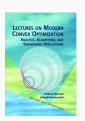
A large class of problems can be cast as semidefinite problems since

(a)
$$\lambda_{\max}(\boldsymbol{X}) \leq t \iff \boldsymbol{X} \leq t\mathbb{I}$$

(b)
$$\sum_{i=1}^k \lambda_i(\boldsymbol{X}) \leq t \iff \exists \theta, \boldsymbol{U} : t \geq k\theta + \operatorname{tr}(\boldsymbol{U}), \theta \mathbb{I} + \boldsymbol{U} \succeq \boldsymbol{X}, \boldsymbol{U} \succeq \boldsymbol{0}$$

(c)
$$\|\boldsymbol{X}\|_* \leq t \iff \exists \boldsymbol{U}, \boldsymbol{V} : \begin{pmatrix} \boldsymbol{U} & \boldsymbol{X} \\ \boldsymbol{X}^\top & \boldsymbol{V} \end{pmatrix} \succeq \boldsymbol{0}, 2t \geq \operatorname{tr}(\boldsymbol{U}) + \operatorname{tr}(\boldsymbol{V})$$

And many other problems! Good places to look are:



Integer Optimization

Integer optimization generalizes linear optimization. For instance,

$$\min_{\mathbf{x} \in \mathbb{Z}^n} \quad \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

s.t.
$$Ax \leq b$$
.

Integer Optimization

Integer optimization generalizes linear optimization. For instance,

$$\min_{\mathbf{x} \in \mathbb{Z}^n} \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} < \mathbf{b}$.

We can also have both continuous and discrete variables: mixed-integer optimization (MIO), mixed-integer conic optimization (MICO)

Integer Optimization

Integer optimization generalizes linear optimization. For instance,

$$\min_{\mathbf{x} \in \mathbb{Z}^n} \quad \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

We can also have both continuous and discrete variables: mixed-integer optimization (MIO), mixed-integer conic optimization (MICO)

How to solve:

- Use Gurobi (branch-and-bound)
- Branch-and-cut with Gurobi and Mosek (if mixed-integer conic)
- Dantzig-Wolfe

Modeling: Logical Constraints

Assume $x_1, x_2, \dots x_n$ and $y_1, y_2, \dots y_n$ are binary decision variables $\{0, 1\}$. How do we model the following?

Modeling: Logical Constraints

Assume $x_1, x_2, \dots x_n$ and $y_1, y_2, \dots y_n$ are binary decision variables $\{0, 1\}$. How do we model the following?

1. Exactly k of $x_1, x_2, \dots x_n$ are equal to 1.

Assume $x_1, x_2, \dots x_n$ and $y_1, y_2, \dots y_n$ are binary decision variables $\{0, 1\}$. How do we model the following?

1. Exactly k of $x_1, x_2, \dots x_n$ are equal to 1. $x_1 + x_2 + x_3 + \dots + x_n = k$

Assume $x_1, x_2, \dots x_n$ and $y_1, y_2, \dots y_n$ are binary decision variables $\{0, 1\}$. How do we model the following?

- 1. Exactly k of $x_1, x_2, \dots x_n$ are equal to 1. $x_1 + x_2 + x_3 + \dots + x_n = k$
- 2. At most k of $x_1, x_2, \dots x_n$ are equal to 1.

Assume $x_1, x_2, \dots x_n$ and $y_1, y_2, \dots y_n$ are binary decision variables $\{0, 1\}$. How do we model the following?

- 1. Exactly k of $x_1, x_2, \dots x_n$ are equal to 1.
 - $x_1+x_2+x_3+\ldots+x_n=k$
- 2. At most k of $x_1, x_2, \dots x_n$ are equal to 1.

$$x_1 + x_2 + x_3 + \ldots + x_n \le k$$

Assume $x_1, x_2, \dots x_n$ and $y_1, y_2, \dots y_n$ are binary decision variables $\{0, 1\}$. How do we model the following?

1. Exactly k of $x_1, x_2, \dots x_n$ are equal to 1.

$$x_1+x_2+x_3+\ldots+x_n=k$$

2. At most k of $x_1, x_2, \dots x_n$ are equal to 1.

$$x_1 + x_2 + x_3 + \ldots + x_n \le k$$

3. If $x_1 = 1$, then $y_1 = 1$.

Assume $x_1, x_2, \dots x_n$ and $y_1, y_2, \dots y_n$ are binary decision variables $\{0, 1\}$. How do we model the following?

- 1. Exactly k of $x_1, x_2, \dots x_n$ are equal to 1.
 - $x_1+x_2+x_3+\ldots+x_n=k$
- 2. At most k of $x_1, x_2, \dots x_n$ are equal to 1.

$$x_1 + x_2 + x_3 + \ldots + x_n \le k$$

3. If $x_1 = 1$, then $y_1 = 1$. $x_1 < y_1$

Assume $x_1, x_2, \dots x_n$ and $y_1, y_2, \dots y_n$ are binary decision variables $\{0, 1\}$. How do we model the following?

1. Exactly k of $x_1, x_2, \dots x_n$ are equal to 1.

$$x_1+x_2+x_3+\ldots+x_n=k$$

2. At most k of $x_1, x_2, \dots x_n$ are equal to 1.

$$x_1+x_2+x_3+\ldots+x_n\leq k$$

3. If $x_1 = 1$, then $y_1 = 1$.

$$x_1 \leq y_1$$

4. If at least k of $x_1, x_2, \dots x_n$ equals 1, then $y_1 = 1$.

Assume $x_1, x_2, \dots x_n$ and $y_1, y_2, \dots y_n$ are binary decision variables $\{0, 1\}$. How do we model the following?

1. Exactly k of $x_1, x_2, \dots x_n$ are equal to 1.

$$x_1 + x_2 + x_3 + \ldots + x_n = k$$

2. At most k of $x_1, x_2, \dots x_n$ are equal to 1.

$$x_1+x_2+x_3+\ldots+x_n\leq k$$

3. If $x_1 = 1$, then $y_1 = 1$.

$$x_1 \leq y_1$$

4. If at least k of $x_1, x_2, \dots x_n$ equals 1, then $y_1 = 1$.

$$x_1 + x_2 + x_3 + \ldots + x_n - (k-1) \le (n-k+1) * y_1$$

Suppose we have a continuous variable a_i ,

• How to model $||a||_1 \le 5$?

Suppose we have a continuous variable a_i ,

• How to model $||a||_1 \le 5$?

$$e^{\top}z \leq 5, \ z \geq a, z \geq -a.$$

• How to model $\|\boldsymbol{a}\|_1 \geq 5$?

Suppose we have a continuous variable a_i ,

• How to model $||a||_1 \le 5$?

$$e^{\top}z \leq 5, \ z \geq a, z \geq -a.$$

• How to model $\|a\|_1 \ge 5$?

$$y_i \leq |a_i|, \ \sum_i y_i \geq 5.$$

Suppose we have a continuous variable a_i ,

• How to model $||a||_1 \le 5$?

$$e^{\top}z \leq 5, \ z \geq a, z \geq -a.$$

• How to model $\|a\|_1 \ge 5$?

$$y_i \leq |a_i|, \sum_i y_i \geq 5.$$

That is,

$$\sum_{i} y_{i} \geq 5, \ a_{i} \geq y_{i} - Mz_{i}, \ a_{i} \leq -y_{i} + M(1 - z_{i}), \ z_{i} \in \{0, 1\}.$$

We use M and z to model the "or" condition.

Suppose we have a continuous variable α_i such that if $z_i=0$ then we must enforce $\alpha_i=0$. What are two ways to model this?

Suppose we have a continuous variable α_i such that if $z_i = 0$ then we must enforce $\alpha_i = 0$. What are two ways to model this?

- We add the constraint:
 - $-Mz_i \le \alpha_i \le Mz_i$, where M is a big number.

Suppose we have a continuous variable α_i such that if $z_i = 0$ then we must enforce $\alpha_i = 0$. What are two ways to model this?

- We add the constraint:
 - $-Mz_i \le \alpha_i \le Mz_i$, where M is a big number.

Question: how do you choose M practically?

Suppose we have a continuous variable α_i such that if $z_i = 0$ then we must enforce $\alpha_i = 0$. What are two ways to model this?

- We add the constraint:
 - $-Mz_i \le \alpha_i \le Mz_i$, where M is a big number.

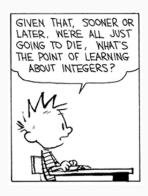
Question: how do you choose M practically?

We would like M to be as small as possible, provided it does not restrict the feasible region, i.e. consider $||\alpha||_{\infty}$.

Before You go... Readings

- Remind yourself of optimization, if it's not immediately familiar.
 Especially duality and convexity (chapters 2-5 in Boyd and Vandenberghe (2004))
- Remind yourself of probability theory, if it's unfamiliar. MIT OCW class 6.436J and the book by Grimmett and Stirzaker are good resources.

Let's wrap up here



Thank you, and see you next week!