Decision Making Under Uncertainty: Lecture 2—Sample Average Approximation

Lecture 2 Ryan Cory-Wright Spring 2024 • Reminder: Please name paper you are presenting for critical paper review and week you are presenting in (by email to me) by Friday.

- Reminder: Please name paper you are presenting for critical paper review and week you are presenting in (by email to me) by Friday.
- HW1 is now out, due in 2 weeks (see Insendi)—brief discussion of HW questions.

- Reminder: Please name paper you are presenting for critical paper review and week you are presenting in (by email to me) by Friday.
- HW1 is now out, due in 2 weeks (see Insendi)—brief discussion of HW questions.
 - Please use office hours, and don't leave it to the last minute.

- Reminder: Please name paper you are presenting for critical paper review and week you are presenting in (by email to me) by Friday.
- HW1 is now out, due in 2 weeks (see Insendi)—brief discussion of HW questions.
 - Please use office hours, and don't leave it to the last minute.
- My next office hours are today 3-4pm.

$$\begin{array}{ll} \min_{x_1, x_2} & x_1 + x_2 \\ \text{s.t.} & \omega_1 x_1 + x_2 \geq 7 \\ & \omega_2 x_1 + x_2 \geq 4 \\ & x_1, x_2 \geq 0 \end{array}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$

$$\begin{array}{ll} \min_{x_1, x_2} & x_1 + x_2 \\ {\rm s.t.} & \omega_1 x_1 + x_2 \geq 7 \\ & \omega_2 x_1 + x_2 \geq 4 \\ & x_1, x_2 \geq 0 \end{array}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ This problem is not well-enough defined to solve

$$\begin{array}{ll} \min_{x_1, x_2} & x_1 + x_2 \\ \text{s.t.} & \omega_1 x_1 + x_2 \geq 7 \\ & \omega_2 x_1 + x_2 \geq 4 \\ & x_1, x_2 \geq 0 \end{array}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other.

$$\begin{split} \min_{x_1, x_2} & x_1 + x_2 \\ \text{s.t.} & \omega_1 x_1 + x_2 \geq 7 \\ & \omega_2 x_1 + x_2 \geq 4 \\ & x_1, x_2 \geq 0 \end{split}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are indept This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume indept

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are indept This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume indept Second, we don't know how x_1, x_2 depend on ω :

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are indept This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume indept Second, we don't know how x_1, x_2 depend on ω :

• Do we pick x, then Nature picks ω , or vice versa?

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are indept This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume indept Second, we don't know how x_1, x_2 depend on ω :

- Do we pick *x*, then Nature picks *ω*, or vice versa?
- First case: want to be feasible w.p.1., so minimizing $x_1 + x_2$ with $x_1 + x_2 \ge 7$, giving optimal solution of (0,7) with cost 7

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are indept This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume indept Second, we don't know how x_1, x_2 depend on ω :

- Do we pick *x*, then Nature picks *ω*, or vice versa?
- First case: want to be feasible w.p.1., so minimizing $x_1 + x_2$ with $x_1 + x_2 \ge 7$, giving optimal solution of (0,7) with cost 7
- Second case: more complicated casewise analysis (exercise)

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are indept This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume indept Second, we don't know how x_1, x_2 depend on ω :

- Do we pick x, then Nature picks ω , or vice versa?
- First case: want to be feasible w.p.1., so minimizing $x_1 + x_2$ with $x_1 + x_2 \ge 7$, giving optimal solution of (0, 7) with cost 7
- Second case: more complicated casewise analysis (exercise)

Conclusion: Terminology matters, should define everything carefully!

Motivation: Ordinary Least Squares Regression

Sample Average Approximation: Theory Newsvendor: A Special Case That We Can Solve The General Problem

Sample Average Approximation: Algorithmics

Can we do Better? Ridge Regression and Sample-Average Approximation

Activities for if we Finish Early

Suggested Readings

Motivation: Ordinary Least Squares Regression

Linear regression: *n* i.i.d. observations of *p*-dimensional input vector **x** and output *y*, $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$. We believe input-output follows model $y = \mathbf{x}^\top \beta_{\text{true}} + \epsilon$, where β_{true} fixed vector, ϵ i.i.d. zero-mean noise.

Linear regression: *n* i.i.d. observations of *p*-dimensional input vector **x** and output *y*, $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$. We believe input-output follows model $y = \mathbf{x}^\top \beta_{\text{true}} + \epsilon$, where β_{true} fixed vector, ϵ i.i.d. zero-mean noise.

How to estimate β ?

Linear regression: *n* i.i.d. observations of *p*-dimensional input vector **x** and output *y*, $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$. We believe input-output follows model $y = \mathbf{x}^\top \beta_{\text{true}} + \epsilon$, where β_{true} fixed vector, ϵ i.i.d. zero-mean noise.

How to estimate β ? Typical answer: minimize OLS error

$$\hat{oldsymbol{eta}} \in rg\min_{oldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^n (y_i - oldsymbol{x}_i^ op oldsymbol{eta})^2$$

Linear regression: *n* i.i.d. observations of *p*-dimensional input vector **x** and output *y*, $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$. We believe input-output follows model $y = \mathbf{x}^\top \beta_{\text{true}} + \epsilon$, where β_{true} fixed vector, ϵ i.i.d. zero-mean noise.

How to estimate β ? Typical answer: minimize OLS error

$$\hat{eta} \in {\sf arg} \min_{eta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - oldsymbol{x}_i^ op eta)^2$$

After some calculus

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{y},$$

where \mathbf{A}^{\dagger} denotes pseudoinverse of \mathbf{A} .

Linear regression: *n* i.i.d. observations of *p*-dimensional input vector **x** and output *y*, $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$. We believe input-output follows model $y = \mathbf{x}^\top \beta_{\text{true}} + \epsilon$, where β_{true} fixed vector, ϵ i.i.d. zero-mean noise.

How to estimate β ? Typical answer: minimize OLS error

$$\hat{eta} \in rg\min_{eta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - oldsymbol{x}_i^ op eta)^2$$

After some calculus

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{y},$$

where \mathbf{A}^{\dagger} denotes pseudoinverse of \mathbf{A} . Assume p fixed, n > p

$$\hat{eta} = (m{X}^{ op}m{X})^{\dagger}m{X}^{ op}m{y} \underbrace{=}_{ ext{substitute } m{y} = m{X}eta + \epsilon} eta_{ ext{true}} + (m{X}^{ op}m{X})^{\dagger}m{X}^{ op}m{\epsilon}$$

If **X** a matrix with singular value decomposition $\mathbf{X} = \mathbf{U} \Sigma \mathbf{V}^{\top}$ Then $\mathbf{X} = \mathbf{U} \Sigma^{\dagger} \mathbf{V}^{\top}$ where Σ^{\dagger} is a diagonal matrix where we invert all non-zero diagonal entries, keep zeroes as zeroes.

For a symmetric matrix like $\mathbf{X}^{\top}\mathbf{X}$, can define

$$(\boldsymbol{X}^{ op}\boldsymbol{X})^{\dagger} := \lim_{\lambda o 0} (\boldsymbol{X}^{ op}\boldsymbol{X} + \lambda \mathbb{I})^{-1}.$$

See the book "Matrix Analysis" by Horn and Johnson.

Almost Sure Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\{X_i\}_{i \in \mathbb{N}}, X$ be random variables. Suppose that $A \in \mathcal{F}$ is a measurable set such that $\mathbb{P}(A) = 1$ and for all $\omega \in A$ we have

$$\boldsymbol{X}_{i}(\omega)
ightarrow \boldsymbol{X}(\omega).$$

Then, we say that $X_i \stackrel{a.s.}{\rightarrow} X$.

Continuous Mapping Theorem

Let X_i, X be random variables. Suppose that $X_i \xrightarrow{a.s.} X$ and f is continuous almost everywhere. Then

 $f(\boldsymbol{X}_i) \stackrel{a.s.}{\rightarrow} f(\boldsymbol{X})$

Consider our rearranged equation:

$$\hat{eta} = (oldsymbol{X}^{ op}oldsymbol{X})^{\dagger}oldsymbol{X}^{ op}oldsymbol{y} = eta_{ ext{true}} + (oldsymbol{X}^{ op}oldsymbol{X})^{\dagger}oldsymbol{X}^{ op}oldsymbol{\epsilon}$$

As $n
ightarrow \infty$, what happens to $\hat{eta}?$

Consider our rearranged equation:

$$\hat{eta} = (\pmb{X}^{ op} \pmb{X})^{\dagger} \pmb{X}^{ op} \pmb{y} = eta_{\mathsf{true}} + (\pmb{X}^{ op} \pmb{X})^{\dagger} \pmb{X}^{ op} \pmb{\epsilon}$$

As $n
ightarrow \infty$, what happens to $\hat{eta}?$

- SLLN $\frac{1}{n} X X^{\top} \stackrel{a.s.}{\rightarrow} \mathbb{E}[x_i x_i^{\top}]$
- SLLN $\frac{\ddot{1}}{n} \boldsymbol{X}^{\top} \boldsymbol{\epsilon} \stackrel{a.s.}{\rightarrow} \boldsymbol{0}$

Consider our rearranged equation:

$$\hat{eta} = (\pmb{X}^{ op} \pmb{X})^{\dagger} \pmb{X}^{ op} \pmb{y} = eta_{\mathsf{true}} + (\pmb{X}^{ op} \pmb{X})^{\dagger} \pmb{X}^{ op} \pmb{\epsilon}$$

As $n \to \infty$, what happens to $\hat{\beta}$?

- SLLN $\frac{1}{n} X X^{\top} \stackrel{a.s.}{\rightarrow} \mathbb{E}[x_i x_i^{\top}]$
- SLLN $\frac{1}{n} \mathbf{X}^{\top} \boldsymbol{\epsilon} \stackrel{a.s.}{\rightarrow} \mathbf{0}$
- Therefore $\hat{oldsymbol{eta}} \stackrel{a.s.}{
 ightarrow} oldsymbol{eta}_{\mathsf{true}}$

Consider our rearranged equation:

$$\hat{eta} = (\pmb{X}^{ op} \pmb{X})^{\dagger} \pmb{X}^{ op} \pmb{y} = eta_{ ext{true}} + (\pmb{X}^{ op} \pmb{X})^{\dagger} \pmb{X}^{ op} \pmb{\epsilon}$$

As $n \to \infty$, what happens to $\hat{\beta}$?

- SLLN $\frac{1}{n} X X^{\top} \stackrel{a.s.}{\rightarrow} \mathbb{E}[x_i x_i^{\top}]$
- SLLN $\frac{1}{n} \mathbf{X}^{\top} \boldsymbol{\epsilon} \stackrel{a.s.}{\rightarrow} \mathbf{0}$
- Therefore $\hat{oldsymbol{eta}} \stackrel{a.s.}{
 ightarrow} oldsymbol{eta}_{\mathsf{true}}$

Figure 1: Thanos Explains Empirical Risk Minimization

• We solved our first stochastic optimization problem!

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i), estimate model β by (1) writing down stochastic optimization problem

$$\hat{eta} = rg\min_{oldsymbol{eta}} \mathbb{E}_{oldsymbol{x},y}[(y - oldsymbol{x}^ opoldsymbol{eta})^2]$$

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i), estimate model β by (1) writing down stochastic optimization problem

$$\hat{\beta} = \arg\min_{\beta} \mathbb{E}_{\mathbf{x},y}[(y - \mathbf{x}^{\top}\beta)^2]$$

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \frac{1}{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$$

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i), estimate model β by (1) writing down stochastic optimization problem

$$\hat{\beta} = \arg\min_{\beta} \mathbb{E}_{\mathbf{x},y}[(y - \mathbf{x}^{\top}\beta)^2]$$

find estimator with least variance, (2) treating each obs. as equally likely, replacing expectation with sample-average approximation

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \frac{1}{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$$

- We showed $\hat{\beta}$ almost surely converges to $\beta_{\rm true}$ as $n \to \infty$

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i), estimate model β by (1) writing down stochastic optimization problem

$$\hat{\beta} = \arg\min_{\beta} \mathbb{E}_{\mathbf{x},y}[(y - \mathbf{x}^{\top}\beta)^2]$$

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \frac{1}{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$$

- We showed $\hat{\beta}$ almost surely converges to $\beta_{\rm true}$ as $n \to \infty$
- So supervised learning is special case of stochastic optimization!

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i), estimate model β by (1) writing down stochastic optimization problem

$$\hat{\beta} = \arg\min_{\beta} \mathbb{E}_{\mathbf{x},y}[(y - \mathbf{x}^{\top}\beta)^2]$$

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \frac{1}{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$$

- We showed $\hat{\beta}$ almost surely converges to $\beta_{\rm true}$ as $n \to \infty$
- So supervised learning is special case of stochastic optimization!
- This would take a ML class 3-4 lectures; let's take a breath here!

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i), estimate model β by (1) writing down stochastic optimization problem

$$\hat{\beta} = \arg\min_{\beta} \mathbb{E}_{\mathbf{x},y}[(y - \mathbf{x}^{\top}\beta)^2]$$

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \frac{1}{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$$

- We showed $\hat{\beta}$ almost surely converges to $\beta_{\rm true}$ as $n \to \infty$
- So supervised learning is special case of stochastic optimization!
- This would take a ML class 3-4 lectures; let's take a breath here!
- Plan for lecture: Show holds more generally, how to solve SAA

Let's break for five minutes here
Sample Average Approximation: Theory

Let's warm up with a special case

• A newsvendor (newspaper salesperson) needs to decide how many newspapers x to buy to maximize their profit

- A newsvendor (newspaper salesperson) needs to decide how many newspapers x to buy to maximize their profit
- She doesn't know how many newspapers there are demand for, D_{ω} in scenario ω . But she does know the probability distribution of D_{ω}

- A newsvendor (newspaper salesperson) needs to decide how many newspapers x to buy to maximize their profit
- She doesn't know how many newspapers there are demand for, D_{ω} in scenario ω . But she does know the probability distribution of D_{ω}
- Each newspaper costs c, can be sold for q if there is demand
- Unsold newspapers get thrown in the recycling bin
- How to optimally set x?

Hot off the Press: The Newsvendor Problem

$$\max_{x\geq 0}\mathbb{E}_{\omega}[\min(D_{\omega},x)q-cx]$$

 $\max_{x\geq 0}\mathbb{E}_{\omega}[\min(D_{\omega},x)q-cx]$

Two cases: $x > D_{\omega}$ or $x \leq D_{\omega}$. Rewrite using conditional expectations

 $\max_{x \ge 0} \mathbb{E}_{\omega}[\min(D_{\omega}, x)q - cx]$

Two cases: $x > D_{\omega}$ or $x \le D_{\omega}$. Rewrite using conditional expectations

 $\max_{x\geq 0}\mathbb{E}_{\omega}[D_{\omega}q-cx|x\leq D_{\omega}]\mathbb{P}(x\leq D_{\omega})+\mathbb{E}_{\omega}[qx-cx|x>D_{\omega}]\mathbb{P}(x>D_{\omega})$

 $\max_{x\geq 0}\mathbb{E}_{\omega}[\min(D_{\omega},x)q-cx]$

Two cases: $x > D_{\omega}$ or $x \leq D_{\omega}$. Rewrite using conditional expectations

 $\max_{x\geq 0}\mathbb{E}_{\omega}[D_{\omega}q-cx|x\leq D_{\omega}]\mathbb{P}(x\leq D_{\omega})+\mathbb{E}_{\omega}[qx-cx|x>D_{\omega}]\mathbb{P}(x>D_{\omega})$

This is convex in x, so differentiate with respect to x, require that 0 in subgradient.

 $\max_{x\geq 0}\mathbb{E}_{\omega}[\min(D_{\omega},x)q-cx]$

Two cases: $x > D_{\omega}$ or $x \leq D_{\omega}$. Rewrite using conditional expectations

 $\max_{x\geq 0}\mathbb{E}_{\omega}[D_{\omega}q-cx|x\leq D_{\omega}]\mathbb{P}(x\leq D_{\omega})+\mathbb{E}_{\omega}[qx-cx|x>D_{\omega}]\mathbb{P}(x>D_{\omega})$

This is convex in x, so differentiate with respect to x, require that 0 in subgradient.

Eventually get

$$x^{\star} \in F_{D_{\omega}}^{-1}\left(\frac{q-c}{q}\right)$$

 $\max_{x \ge 0} \mathbb{E}_{\omega}[\min(D_{\omega}, x)q - cx]$

Two cases: $x > D_{\omega}$ or $x \leq D_{\omega}$. Rewrite using conditional expectations

 $\max_{x \geq 0} \mathbb{E}_{\omega} [D_{\omega}q - cx | x \leq D_{\omega}] \mathbb{P}(x \leq D_{\omega}) + \mathbb{E}_{\omega} [qx - cx | x > D_{\omega}] \mathbb{P}(x > D_{\omega})$

This is convex in x, so differentiate with respect to x, require that 0 in subgradient.

Eventually get

$$x^{\star} \in F_{D_{\omega}}^{-1}\left(rac{q-c}{q}
ight)$$

That is, a $\frac{(q-c)}{q}$ th quantile of D_{ω} Insight: setting x equal to $\mathbb{E}[D_{\omega}]$ could be bad, especially if $q \gg c$

The General Problem

Consider stochastic optimization problem:

$$\min_{\boldsymbol{x}\in\mathbb{R}^n} \quad \boldsymbol{c}^{\top}\boldsymbol{x} + \mathbb{E}_{\omega}[h(\boldsymbol{x},\boldsymbol{\omega})]$$

s.t.
$$Ax \leq b$$

Consider stochastic optimization problem:

$$\min_{oldsymbol{x}\in\mathbb{R}^n} \quad oldsymbol{c}^ opoldsymbol{x}+\mathbb{E}_\omega[h(oldsymbol{x},\omega)]$$
s.t. $oldsymbol{A}oldsymbol{x}\leqoldsymbol{b}$

Consider stochastic optimization problem:

where

• x are our first-stage (or here-and-now) decision variables, which we select before nature picks ω

Consider stochastic optimization problem:

- x are our first-stage (or here-and-now) decision variables, which we select before nature picks ω
- ω are the random variables selected by nature, according to their joint probability distribution (assumed to be known)

Consider stochastic optimization problem:

$$egin{array}{ll} \min_{oldsymbol{x}\in\mathbb{R}^n} & oldsymbol{c}^ opoldsymbol{x}+\mathbb{E}_\omega[h(oldsymbol{x},oldsymbol{\omega})] \ & ext{s.t.} & oldsymbol{A}oldsymbol{x}\leqoldsymbol{b} \end{array}$$

- x are our first-stage (or here-and-now) decision variables, which we select before nature picks ω
- ω are the random variables selected by nature, according to their joint probability distribution (assumed to be known)
- y(ω) are our second-stage (or wait-and-see, or recourse) decision variables, that we are allowed to pick after nature picks ω

Consider stochastic optimization problem:

$$egin{array}{ll} \min_{oldsymbol{x}\in\mathbb{R}^n} & oldsymbol{c}^ opoldsymbol{x}+\mathbb{E}_\omega[h(oldsymbol{x},oldsymbol{\omega})] \ & ext{s.t.} & oldsymbol{A}oldsymbol{x}\leqoldsymbol{b} \end{array}$$

- x are our first-stage (or here-and-now) decision variables, which we select before nature picks ω
- ω are the random variables selected by nature, according to their joint probability distribution (assumed to be known)
- y(ω) are our second-stage (or wait-and-see, or recourse) decision variables, that we are allowed to pick after nature picks ω
- A linear optimization problem with random parameters

• Complexity Theory: Solving this problem is #P-hard

- Complexity Theory: Solving this problem is #P-hard
 - See Hanasusanto et al. (Math. Prog., 2016) for a proof

- Complexity Theory: Solving this problem is #P-hard
 - See Hanasusanto et al. (Math. Prog., 2016) for a proof
 - Who knows what this means?

- Complexity Theory: Solving this problem is *#P*-hard
 - See Hanasusanto et al. (Math. Prog., 2016) for a proof
 - Who knows what this means?
 - As hard as counting number of solutions to NP-hard problem

- Complexity Theory: Solving this problem is #*P*-hard
 - See Hanasusanto et al. (Math. Prog., 2016) for a proof
 - Who knows what this means?
 - As hard as counting number of solutions to NP-hard problem
 - I once heard someone say "Judging a problem by its complexity is like judging someone by the worst thing they have ever done" —In and of itself, #P-hard doesn't mean intractable

- Complexity Theory: Solving this problem is *#P*-hard
 - See Hanasusanto et al. (Math. Prog., 2016) for a proof
 - Who knows what this means?
 - As hard as counting number of solutions to NP-hard problem
 - I once heard someone say "Judging a problem by its complexity is like judging someone by the worst thing they have ever done" —In and of itself, #P-hard doesn't mean intractable
- Numerically: Expectations hard to evaluate in high-dim settings

Figure 2: Dickens explains the curse of dimensionality

- Complexity Theory: Solving this problem is #*P*-hard
 - See Hanasusanto et al. (Math. Prog., 2016) for a proof
 - Who knows what this means?
 - As hard as counting number of solutions to NP-hard problem
 - I once heard someone say "Judging a problem by its complexity is like judging someone by the worst thing they have ever done" —In and of itself, #P-hard doesn't mean intractable
- Numerically: Expectations hard to evaluate in high-dim settings

Figure 2: Dickens explains the curse of dimensionality

- Structure of Optimal Solutions: In general, ${\it y}$ a function of ω

Sample Average Approximation to the Rescue

Let's play same game as in the linear regression case!

Sample Average Approximation to the Rescue

Let's play same game as in the linear regression case! Replace (unknown) expectation over ω with expectation over empirical distribution ω_i . With *n* observations of ω , or *n* "scenarios", solve:

$$\hat{x} \in rg\min_{x \in \mathbb{R}^n} \quad oldsymbol{c}^ op x + rac{1}{n} \sum_{i=1}^n h(x, \omega^i)$$
s.t. $oldsymbol{A} x \leq oldsymbol{b}$

Sample Average Approximation to the Rescue

Let's play same game as in the linear regression case! Replace (unknown) expectation over ω with expectation over empirical distribution ω_i . With *n* observations of ω , or *n* "scenarios", solve:

$$\hat{oldsymbol{x}} \in rg\min_{oldsymbol{x} \in \mathbb{R}^n} \quad oldsymbol{c}^ op oldsymbol{x} + rac{1}{n} \sum_{i=1}^n h(oldsymbol{x}, oldsymbol{\omega}^i)$$
s.t. $oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}$

Why is this a good thing to do?

Let's play same game as in the linear regression case! Replace (unknown) expectation over ω with expectation over empirical distribution ω_i . With *n* observations of ω , or *n* "scenarios", solve:

$$\hat{x} \in rg\min_{oldsymbol{x} \in \mathbb{R}^n} \quad oldsymbol{c}^ op oldsymbol{x} + rac{1}{n} \sum_{i=1}^n h(oldsymbol{x}, oldsymbol{\omega}^i)$$
s.t. $oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}$

Why is this a good thing to do? Justifications:

• Joint distribution over ω only exists *in our imagination*, while empirical distribution constructed from data, which is real

Let's play same game as in the linear regression case! Replace (unknown) expectation over ω with expectation over empirical distribution ω_i . With *n* observations of ω , or *n* "scenarios", solve:

$$\hat{x} \in rg\min_{oldsymbol{x} \in \mathbb{R}^n} \quad oldsymbol{c}^ op oldsymbol{x} + rac{1}{n} \sum_{i=1}^n h(oldsymbol{x}, oldsymbol{\omega}^i)$$
s.t. $oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}$

Why is this a good thing to do? Justifications:

- Joint distribution over ω only exists *in our imagination*, while empirical distribution constructed from data, which is real
- As n→∞, for i.i.d. ωⁱ, x̂ almost surely converges to a minimizer of our two-stage problem under true joint distribution of ω

Let's play same game as in the linear regression case! Replace (unknown) expectation over ω with expectation over empirical distribution ω_i . With *n* observations of ω , or *n* "scenarios", solve:

$$\hat{x} \in \arg\min_{x \in \mathbb{R}^n} \quad c^{\top}x + \frac{1}{n}\sum_{i=1}^n h(x, \omega^i)$$

s.t. $Ax \leq b$

Why is this a good thing to do? Justifications:

- Joint distribution over ω only exists *in our imagination*, while empirical distribution constructed from data, which is real
- As n→∞, for i.i.d. ωⁱ, x̂ almost surely converges to a minimizer of our two-stage problem under true joint distribution of ω
- Who can tell me why we use "arg min" and "a minimizer" here?

• Define a sample-average function, redefine expected value

$$egin{aligned} \hat{g}_N(m{x}) &:= \min_{m{y}(\omega^i)} m{c}^ op m{x} + rac{1}{N} \sum_{i=1}^n h(m{x}, \omega^i), \ g(m{x}) &:= \min_{m{y}(\omega)} \mathbb{E}_\omega[m{c}^ op m{x} + rac{1}{N} \sum_{i=1}^n h(m{x}, \omega)] \end{aligned}$$

h is the optimal value of a minimization problem. Why is it convex?

h is the optimal value of a minimization problem. Why is it convex?

$$h(\boldsymbol{x}, \omega) := \min_{\boldsymbol{y}(\omega)} \boldsymbol{q}(\omega)^{ op} \boldsymbol{y}(\omega) ext{ s.t. } \boldsymbol{D}(\omega) \boldsymbol{x} + \boldsymbol{F}(\omega) \boldsymbol{y}(\omega) \leq \boldsymbol{d}(\omega)$$

h is the optimal value of a minimization problem. Why is it convex?

$$h(\boldsymbol{x},\omega) := \min_{\boldsymbol{y}(\omega)} \boldsymbol{q}(\omega)^{\top} \boldsymbol{y}(\omega) \text{ s.t. } \boldsymbol{D}(\omega) \boldsymbol{x} + \boldsymbol{F}(\omega) \boldsymbol{y}(\omega) \leq \boldsymbol{d}(\omega)$$

Duality!

$$h(\boldsymbol{x}, \boldsymbol{\omega}) = \max_{\boldsymbol{\mu}(\omega)} \quad (\boldsymbol{d}(\boldsymbol{\omega}) - \boldsymbol{D}(\omega)\boldsymbol{x})^{\top}\boldsymbol{\mu}(\omega) \text{ s.t. } \boldsymbol{F}(\omega)^{\top}\boldsymbol{\mu}(\omega) = \boldsymbol{q}(\boldsymbol{\omega}), \boldsymbol{\mu}(\omega) \leq \boldsymbol{0}$$

h is the optimal value of a minimization problem. Why is it convex?

$$h(\mathbf{x}, \omega) := \min_{\mathbf{y}(\omega)} \mathbf{q}(\omega)^{\top} \mathbf{y}(\omega) \text{ s.t. } \mathbf{D}(\omega) \mathbf{x} + \mathbf{F}(\omega) \mathbf{y}(\omega) \leq \mathbf{d}(\omega)$$

Duality!

$$h(\boldsymbol{x}, \boldsymbol{\omega}) = \max_{\boldsymbol{\mu}(\omega)} \quad (\boldsymbol{d}(\boldsymbol{\omega}) - \boldsymbol{D}(\omega)\boldsymbol{x})^{\top}\boldsymbol{\mu}(\omega) \text{ s.t. } \boldsymbol{F}(\omega)^{\top}\boldsymbol{\mu}(\omega) = \boldsymbol{q}(\boldsymbol{\omega}), \boldsymbol{\mu}(\omega) \leq \boldsymbol{0}$$

 $h(\mathbf{x}, \boldsymbol{\omega})$ is the pointwise maximum of functions linear in \mathbf{x} , hence convex
Aside

h is the optimal value of a minimization problem. Why is it convex?

$$h(\boldsymbol{x}, \boldsymbol{\omega}) := \min_{\boldsymbol{y}(\boldsymbol{\omega})} \boldsymbol{q}(\boldsymbol{\omega})^{\top} \boldsymbol{y}(\boldsymbol{\omega}) \text{ s.t. } \boldsymbol{D}(\boldsymbol{\omega}) \boldsymbol{x} + \boldsymbol{F}(\boldsymbol{\omega}) \boldsymbol{y}(\boldsymbol{\omega}) \leq \boldsymbol{d}(\boldsymbol{\omega})$$

Duality!

$$h(\boldsymbol{x}, \boldsymbol{\omega}) = \max_{\boldsymbol{\mu}(\omega)} \quad (\boldsymbol{d}(\boldsymbol{\omega}) - \boldsymbol{D}(\omega)\boldsymbol{x})^{\top}\boldsymbol{\mu}(\omega) \text{ s.t. } \boldsymbol{F}(\omega)^{\top}\boldsymbol{\mu}(\omega) = \boldsymbol{q}(\boldsymbol{\omega}), \boldsymbol{\mu}(\omega) \leq \boldsymbol{0}$$

 $h(x, \omega)$ is the pointwise maximum of functions linear in x, hence convex Pointwise maximum also reveals h is continuous on its domain • Define a sample-average function, redefine expected value

$$egin{aligned} \hat{g}_{\mathcal{N}}(oldsymbol{x}) :=& oldsymbol{c}^{ op}oldsymbol{x} + rac{1}{\mathcal{N}}\sum_{i=1}^{\mathcal{N}}h(oldsymbol{x},\omega^i), \ & g(oldsymbol{x}) :=& oldsymbol{c}^{ op}oldsymbol{x} + \mathbb{E}_{\omega}[h(oldsymbol{x},\omega)] \end{aligned}$$

• By SLLN, continuity of $g_N, g: g_N(\mathbf{x}) \stackrel{a.s.}{\rightarrow} g(\mathbf{x}) \ \forall \mathbf{x} : \mathbf{A}\mathbf{x} \leq \mathbf{b}$

¹See Corollary 3 of "Monte Carlo Sampling Methods" by Shapiro (2003) for details.

• Define a sample-average function, redefine expected value

$$\hat{g}_N(oldsymbol{x}) := oldsymbol{c}^ op oldsymbol{x} + rac{1}{N} \sum_{i=1}^N h(oldsymbol{x}, oldsymbol{\omega}^i), \ g(oldsymbol{x}) := oldsymbol{c}^ op oldsymbol{x} + \mathbb{E}_\omega[h(oldsymbol{x}, oldsymbol{\omega})]$$

- By SLLN, continuity of $g_N, g: g_N(\mathbf{x}) \stackrel{a.s.}{\rightarrow} g(\mathbf{x}) \ \forall \mathbf{x} : \mathbf{A}\mathbf{x} \leq \mathbf{b}$
- Therefore, (under mild conditions¹), $\inf_{x} g_{N}(x) \stackrel{a.s.}{\rightarrow} \inf_{x} g(x)$

¹See Corollary 3 of "Monte Carlo Sampling Methods" by Shapiro (2003) for details.

When Things go Wrong, as They Sometimes Will

Let's look at our sample-average approximation again:

$$egin{aligned} \hat{m{x}} \in rg\min_{m{x}\in\mathbb{R}^n} & m{c}^{ op}m{x} + rac{1}{n}\sum_{i=1}^n h(m{x},\omega^i) \ & ext{s.t.} & m{A}m{x} \leq m{b} \end{aligned}$$

What can go wrong?

$$egin{aligned} \hat{m{x}} \in rg\min_{m{x}\in\mathbb{R}^n} & m{c}^{ op}m{x} + rac{1}{n}\sum_{i=1}^n h(m{x},\omega^i) \ & ext{s.t.} & m{A}m{x} \leq m{b} \end{aligned}$$

What can go wrong? In practice, we have a finite number of observations. That means:

$$egin{aligned} \hat{m{x}} \in rg\min_{m{x}\in \mathbb{R}^n} & m{c}^{ op}m{x} + rac{1}{n}\sum_{i=1}^n h(m{x},\omega^i) \ & ext{s.t.} & m{A}m{x} \leq m{b} \end{aligned}$$

What can go wrong? In practice, we have a finite number of observations. That means:

• \hat{x} may not be feasible for unseen ω 's

$$egin{aligned} \hat{m{x}} \in rg\min_{m{x}\in \mathbb{R}^n} & m{c}^{ op}m{x} + rac{1}{n}\sum_{i=1}^n h(m{x},\omega^i) \ & ext{s.t.} & m{A}m{x} \leq m{b} \end{aligned}$$

What can go wrong? In practice, we have a finite number of observations. That means:

- \hat{x} may not be feasible for unseen ω 's
 - Can include all extreme points of joint dist of ω, or if h(x, ωⁱ) is (almost surely) feasible for any x—(relatively) complete recourse

$$egin{aligned} \hat{m{x}} \in rg\min_{m{x}\in \mathbb{R}^n} & m{c}^{ op}m{x} + rac{1}{n}\sum_{i=1}^n h(m{x},\omega^i) \ & ext{s.t.} & m{A}m{x} \leq m{b} \end{aligned}$$

What can go wrong? In practice, we have a finite number of observations. That means:

- \hat{x} may not be feasible for unseen ω 's
 - Can include all extreme points of joint dist of ω, or if h(x, ωⁱ) is (almost surely) feasible for any x—(relatively) complete recourse
- \hat{x}_N might be far from x^* , especially if N small relative to dim of x
 - A motivation for distributionally robust optimization—see later

Let's break for five minutes. Then talk about how to solve these problems

Sample Average Approximation: Algorithmics

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

• Make a copy of \mathbf{y}^i for each scenario ω^i and solve

$$\hat{x} \in \arg\min_{x \in \mathbb{R}^n} \quad c^{\top}x + \frac{1}{n}\sum_{i=1}^n h(x, \omega^i)$$

s.t. $Ax < b$

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

• Make a copy of \mathbf{y}^i for each scenario ω^i and solve

$$\hat{x} \in \arg\min_{x \in \mathbb{R}^n} \quad c^{\top}x + \frac{1}{n}\sum_{i=1}^n h(x, \omega^i)$$

s.t. $Ax < b$

• Pros: very quick to code, if it works, then we are done

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

• Make a copy of \mathbf{y}^i for each scenario ω^i and solve

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^n} \quad \mathbf{c}^{\top}\mathbf{x} + \frac{1}{n}\sum_{i=1}^n h(\mathbf{x}, \omega^i)$$

s.t. $\mathbf{A}\mathbf{x} < \mathbf{b}$

- Pros: very quick to code, if it works, then we are done
- Good first thing to try

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

• Make a copy of \boldsymbol{y}^i for each scenario $\boldsymbol{\omega}^i$ and solve

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^n} \quad \mathbf{c}^{\top}\mathbf{x} + \frac{1}{n}\sum_{i=1}^n h(\mathbf{x}, \omega^i)$$

s.t. $\mathbf{A}\mathbf{x} < \mathbf{b}$

- Pros: very quick to code, if it works, then we are done
- Good first thing to try
- Cons: this optimization problem might be big. Really big

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

• Make a copy of \mathbf{y}^i for each scenario ω^i and solve

$$\hat{x} \in \arg\min_{x \in \mathbb{R}^n} \quad c^{\top}x + \frac{1}{n}\sum_{i=1}^n h(x, \omega^i)$$

s.t. $Ax < b$

- Pros: very quick to code, if it works, then we are done
- Good first thing to try
- Cons: this optimization problem might be big. Really big
- Example: electricity market with random demand at 20 nodes that can independently be "low" or "high"

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

• Make a copy of \mathbf{y}^i for each scenario ω^i and solve

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^n} \quad \mathbf{c}^{\top}\mathbf{x} + \frac{1}{n}\sum_{i=1}^n h(\mathbf{x}, \omega^i)$$

s.t. $\mathbf{A}\mathbf{x} < \mathbf{b}$

- Pros: very quick to code, if it works, then we are done
- Good first thing to try
- Cons: this optimization problem might be big. Really big
- Example: electricity market with random demand at 20 nodes that can independently be "low" or "high" That's $2^{20} = 1048576$ copies of y, which is intractable for a real market

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

• Make a copy of $oldsymbol{y}^i$ for each scenario $oldsymbol{\omega}^i$ and solve

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^n} \quad \mathbf{c}^{\top}\mathbf{x} + \frac{1}{n}\sum_{i=1}^n h(\mathbf{x}, \omega^i)$$

s.t. $\mathbf{A}\mathbf{x} < \mathbf{b}$

- Pros: very quick to code, if it works, then we are done
- Good first thing to try
- Cons: this optimization problem might be big. Really big
- Example: electricity market with random demand at 20 nodes that can independently be "low" or "high" That's $2^{20} = 1048576$ copies of y, which is intractable for a real market
- Still, you can sometimes do well by subsampling the scenarios (Shapiro and Homem-de-Mello, 1998)

What optimizers usually do: use a decomposition scheme called Benders decomposition (sometimes called the "L-shaped" method)

What optimizers usually do: use a decomposition scheme called Benders decomposition (sometimes called the "L-shaped" method)

Consider

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad \boldsymbol{c}^\top \boldsymbol{x} + \frac{1}{n} \sum_{i=1}^n h(\boldsymbol{x}, \boldsymbol{\omega}^i)$$
s.t. $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$

Let $\theta \geq \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{x}, \omega^{i})$ be an epigraph variable

$$\min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad \boldsymbol{c}^\top \boldsymbol{x} + \theta$$

s.t. $\boldsymbol{A} \boldsymbol{x} < \boldsymbol{b}$.

$$\min_{\boldsymbol{x}\in\mathbb{R}^n,\theta} \quad \boldsymbol{c}^{\top}\boldsymbol{x}+\theta$$

s.t. $\boldsymbol{A}\boldsymbol{x}\leq\boldsymbol{b}.$

(Sketch) We iteratively

• Solve this "master" problem to find an optimal **x**

$$\min_{\boldsymbol{x}\in\mathbb{R}^n,\theta} \quad \boldsymbol{c}^{\top}\boldsymbol{x}+\theta$$

s.t. $\boldsymbol{A}\boldsymbol{x}\leq\boldsymbol{b}.$

(Sketch) We iteratively

- Solve this "master" problem to find an optimal x
- Evaluate $1/n\sum_{i=1}^n h(\mathbf{x}, \boldsymbol{\omega}^i)$ and add inequalities which model
 - $\theta \geq \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{x}, \boldsymbol{\omega}^{i})$
 - For x to be feasible, there is a feasible $y(\omega^i)$ in each scenario ω^i

until we converge.

$$\min_{\boldsymbol{x}\in\mathbb{R}^n,\theta} \quad \boldsymbol{c}^{\top}\boldsymbol{x}+\theta$$

s.t. $\boldsymbol{A}\boldsymbol{x}\leq\boldsymbol{b}.$

(Sketch) We iteratively

- Solve this "master" problem to find an optimal x
- Evaluate $1/n \sum_{i=1}^{n} h(\mathbf{x}, \omega^{i})$ and add inequalities which model
 - $\theta \geq \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{x}, \boldsymbol{\omega}^{i})$
 - For x to be feasible, there is a feasible $y(\omega^i)$ in each scenario ω^i

until we converge. We never model $y(\omega^i)$, so we replaced one intractable problem with a sequence of (possibly many) tractable ones

$$\min_{\boldsymbol{x}\in\mathbb{R}^n,\theta} \quad \boldsymbol{c}^{\top}\boldsymbol{x}+\theta$$

s.t. $\boldsymbol{A}\boldsymbol{x}\leq\boldsymbol{b}.$

(Sketch) We iteratively

- Solve this "master" problem to find an optimal x
- Evaluate $1/n \sum_{i=1}^{n} h(\mathbf{x}, \omega^{i})$ and add inequalities which model
 - $\theta \geq \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{x}, \boldsymbol{\omega}^{i})$
 - For x to be feasible, there is a feasible $y(\omega^i)$ in each scenario ω^i

until we converge. We never model $y(\omega^i)$, so we replaced one intractable problem with a sequence of (possibly many) tractable ones

Remark: About to go through how this works in gory detail. However, I find the best way to understand this method is to code it for yourself.

Suppose we solve

$$\min_{\boldsymbol{x} \in \mathbb{R}^n, \theta} \quad \boldsymbol{c}^\top \boldsymbol{x} + \theta$$

s.t. $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}.$

and obtain some solution x. Two cases:

There is some scenario ωⁱ for which no y(ω) can make the scenario feasible → we need to tell the master problem that this x is infeasible, via a *feasibility cut*

Suppose we solve

$$\min_{\boldsymbol{x} \in \mathbb{R}^n, \theta} \quad \boldsymbol{c}^\top \boldsymbol{x} + \theta$$

s.t. $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}.$

and obtain some solution x. Two cases:

- There is some scenario ωⁱ for which no y(ω) can make the scenario feasible → we need to tell the master problem that this x is infeasible, via a *feasibility cut*
- Every scenario ω^i is feasible \rightarrow we need to tell the master problem how much x costs via an *optimality cut*

Benders Decomposition: Feasibility Cut

Suppose we solve

$$\min_{\boldsymbol{\in}\mathbb{R}^n,\boldsymbol{\theta}} \quad \boldsymbol{c}^{\top}\boldsymbol{x} + \boldsymbol{\theta}$$

s.t. $\boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b}$.

x

and obtain some solution x such that in scenario i no $y(\omega)$ can make the scenario feasible.

Benders Decomposition: Feasibility Cut

Suppose we solve

$$\min_{\boldsymbol{x}\in\mathbb{R}^n,\theta} \quad \boldsymbol{c}^{\top}\boldsymbol{x}+\theta$$

s.t. $\boldsymbol{A}\boldsymbol{x}\leq\boldsymbol{b}.$

and obtain some solution x such that in scenario i no $y(\omega)$ can make the scenario feasible. Then, the dual problem in this scenario is unbounded (why?), so there is some $\mu(\omega^i)$ such that

$$(\boldsymbol{d}(\boldsymbol{\omega}) - \boldsymbol{D}(\boldsymbol{\omega})\boldsymbol{x})^{\top}\boldsymbol{\mu}(\boldsymbol{\omega}) > 0, \ \boldsymbol{F}(\boldsymbol{\omega})^{\top}\boldsymbol{\mu}(\boldsymbol{\omega}) = \boldsymbol{q}(\boldsymbol{\omega}), \boldsymbol{\mu}(\boldsymbol{\omega}) \leq \boldsymbol{0}.$$

Benders Decomposition: Feasibility Cut

Suppose we solve

$$\min_{\boldsymbol{x} \in \mathbb{R}^n, \theta} \quad \boldsymbol{c}^\top \boldsymbol{x} + \theta$$

s.t. $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}.$

and obtain some solution x such that in scenario i no $y(\omega)$ can make the scenario feasible. Then, the dual problem in this scenario is unbounded (why?), so there is some $\mu(\omega^i)$ such that

$$(\boldsymbol{d}(\boldsymbol{\omega}) - \boldsymbol{D}(\boldsymbol{\omega})\boldsymbol{x})^{\top}\boldsymbol{\mu}(\boldsymbol{\omega}) > 0, \ \boldsymbol{F}(\boldsymbol{\omega})^{\top}\boldsymbol{\mu}(\boldsymbol{\omega}) = \boldsymbol{q}(\boldsymbol{\omega}), \boldsymbol{\mu}(\boldsymbol{\omega}) \leq \boldsymbol{0}.$$

Therefore, we fix $\mu(\omega^i)$ and impose the feasibility cut

$$(\boldsymbol{d}(\boldsymbol{\omega}^i) - \boldsymbol{D}(\boldsymbol{\omega}^i)\boldsymbol{x})^\top \boldsymbol{\mu}(\boldsymbol{\omega}^i) \leq 0,$$

in the master problem, where everything but \boldsymbol{x} is data

$$egin{aligned} \min_{oldsymbol{x}\in\mathbb{R}^n, heta} &oldsymbol{c}^{ op}oldsymbol{x}+ heta\ & ext{s.t.} &oldsymbol{A}oldsymbol{x}\leqoldsymbol{b},\ &oldsymbol{(d}(\omega^i)-oldsymbol{D}(\omega^i)oldsymbol{x})^{ op}oldsymbol{\mu}(\omega^i)\leq 0. \end{aligned}$$

heta has usually underestimated $1/n\sum_{i=1}^n h({m x},{m \omega}^i)$

 θ has usually underestimated $1/n\sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$

Need cut involving θ , which tells master problem what \boldsymbol{x} costs

heta has usually underestimated $1/n\sum_{i=1}^n h({m x},\omega^i)$

Need cut involving θ , which tells master problem what x costs By strong duality

$$rac{1}{n}\sum_{i=1}^n h(oldsymbol{x},\omega^i) = 1/n\sum_{i=1}^n (oldsymbol{d}(\omega^i) - oldsymbol{D}(\omega^i)oldsymbol{x})^ op oldsymbol{\mu}(\omega^i),$$

where $\mu(\omega^i)$, dual-optimal in scenario *i*, is data

heta has usually underestimated $1/n\sum_{i=1}^n h({m x},\omega^i)$

Need cut involving θ , which tells master problem what x costs By strong duality

$$rac{1}{n}\sum_{i=1}^n h(m{x},m{\omega}^i) = 1/n\sum_{i=1}^n (m{d}(m{\omega}^i) - m{D}(m{\omega}^i)m{x})^ opm{\mu}(m{\omega}^i),$$

where $\mu(\omega^i)$, dual-optimal in scenario *i*, is data

By weak duality, for any $ar{x}$

$$rac{1}{n}\sum_{i=1}^n h(ar{m{x}},\omega^i) \geq rac{1}{n}\sum_{i=1}^n (m{d}(\omega^i) - m{D}(\omega^i)ar{m{x}})^ opm{\mu}(\omega^i),$$

where everything but $ar{x}$ is data

heta has usually underestimated $1/n\sum_{i=1}^n h({m x},\omega^i)$

Need cut involving θ , which tells master problem what x costs By strong duality

$$rac{1}{n}\sum_{i=1}^n h(m{x},m{\omega}^i) = 1/n\sum_{i=1}^n (m{d}(m{\omega}^i) - m{D}(m{\omega}^i)m{x})^ opm{\mu}(m{\omega}^i),$$

where $\mu(\omega^i)$, dual-optimal in scenario *i*, is data

By weak duality, for any $ar{x}$

$$rac{1}{n}\sum_{i=1}^n h(ar{m{x}},\omega^i) \geq rac{1}{n}\sum_{i=1}^n (m{d}(\omega^i) - m{D}(\omega^i)ar{m{x}})^ opm{\mu}(\omega^i),$$

where everything but $ar{x}$ is data

Therefore, we add cut

$$heta \geq rac{1}{n}\sum_{i=1}^n (oldsymbol{d}(\omega^i) - oldsymbol{D}(\omega^i)ar{f x})^ opoldsymbol{\mu}(\omega^i)$$
$$egin{aligned} \min_{oldsymbol{x}\in\mathbb{R}^n, heta} &oldsymbol{c}^ opoldsymbol{x}+ heta\ ext{s.t.} &oldsymbol{A}oldsymbol{x}\leqoldsymbol{b},\ & heta\geqrac{1}{n}\sum_{i=1}^n(oldsymbol{d}(\omega^i)-oldsymbol{D}(\omega^i)ar{oldsymbol{x}})^ opoldsymbol{\mu}(\omega^i),\ &oldsymbol{d}(\omega^i)-oldsymbol{D}(\omega^i)oldsymbol{x})^ opoldsymbol{\mu}(\omega^i)\leq 0. \end{aligned}$$

Sample Average Approximation: Code You will write this yourself in the first assignment :-) Can we do Better? Ridge Regression and Sample-Average Approximation

Can we do Better Than the Sample-Average Approximation?

Returning to Linear Regression

Statisticians don't solve problems like

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^p} \quad \frac{1}{n} \|\boldsymbol{X}\boldsymbol{\beta}-\boldsymbol{y}\|_2^2$$

to pick β , despite SAA's properties. Why not?

Statisticians don't solve problems like

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^p} \quad \frac{1}{n} \|\boldsymbol{X}\boldsymbol{\beta}-\boldsymbol{y}\|_2^2$$

to pick β , despite SAA's properties. Why not?

Because *n* is finite; we want β to perform as well as possible on an unseen observation (x_i, y_i), not just minimize training error.

Statisticians don't solve problems like

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^p} \quad \frac{1}{n} \|\boldsymbol{X}\boldsymbol{\beta}-\boldsymbol{y}\|_2^2$$

to pick β , despite SAA's properties. Why not?

Because *n* is finite; we want β to perform as well as possible on an unseen observation (x_i, y_i), not just minimize training error. They solve

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^p} \quad \frac{1}{n} \|\boldsymbol{X}\boldsymbol{\beta}-\boldsymbol{y}\|_2^2 + R(\boldsymbol{\beta}),$$

where $R(\cdot)$ is a regularization term, e.g., $\frac{1}{2\gamma} \|\beta\|_2^2 + \lambda \|\beta\|_1$ for appropriately chosen λ, γ (elastic net method, Zou and Hastie 2005).

Statisticians don't solve problems like

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^p} \quad \frac{1}{n} \|\boldsymbol{X}\boldsymbol{\beta}-\boldsymbol{y}\|_2^2$$

to pick β , despite SAA's properties. Why not?

Because *n* is finite; we want β to perform as well as possible on an unseen observation (x_i, y_i), not just minimize training error. They solve

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^p} \quad \frac{1}{n} \|\boldsymbol{X}\boldsymbol{\beta}-\boldsymbol{y}\|_2^2 + R(\boldsymbol{\beta}),$$

where $R(\cdot)$ is a regularization term, e.g., $\frac{1}{2\gamma} ||\beta||_2^2 + \lambda ||\beta||_1$ for appropriately chosen λ, γ (elastic net method, Zou and Hastie 2005). This usually performs better out-of-sample.

• In the 2000s, sample-average approximation was a very popular method for optimizing under uncertainty

- In the 2000s, sample-average approximation was a very popular method for optimizing under uncertainty
- In the early 2010s, the community became more aware of the danger of overfitting. Since then, variants of SAA that account for overfitting with better finite-sample guarantees have become popular

- In the 2000s, sample-average approximation was a very popular method for optimizing under uncertainty
- In the early 2010s, the community became more aware of the danger of overfitting. Since then, variants of SAA that account for overfitting with better finite-sample guarantees have become popular
- We still teach SAA, because you need to understand SAA first

- In the 2000s, sample-average approximation was a very popular method for optimizing under uncertainty
- In the early 2010s, the community became more aware of the danger of overfitting. Since then, variants of SAA that account for overfitting with better finite-sample guarantees have become popular
- We still teach SAA, because you need to understand SAA first
- Variants intimately related to distributional robustness, so we'll come back to them later

- In the 2000s, sample-average approximation was a very popular method for optimizing under uncertainty
- In the early 2010s, the community became more aware of the danger of overfitting. Since then, variants of SAA that account for overfitting with better finite-sample guarantees have become popular
- We still teach SAA, because you need to understand SAA first
- Variants intimately related to distributional robustness, so we'll come back to them later
- Google "Robust SAA" by Bertsimas et al. (Math. Prog. 2017)

Extension: Accelerating Benders Decomposition for Facility Location

See slides by Fischetti (2017)

Activities for if we Finish Early

Either Prove or Provide a Counterexample for the Following Statements

- The intersection of convex sets is convex.
- The union of convex sets is convex.
- All polyhedral sets are convex.

- Value of Stochastic Solution.
- Value of Perfect Information.

1. HW1 Q0.

- 1. HW1 Q0.
- 2. Class discussion: Summarize the Pros and Cons of the Sample Average Approximation Method, based on what we have learned so far.

- 1. HW1 Q0.
- 2. Class discussion: Summarize the Pros and Cons of the Sample Average Approximation Method, based on what we have learned so far.
- 3. Shapiro and Philpott Introduction to Stochastic Programming Tutorial.

- 1. HW1 Q0.
- 2. Class discussion: Summarize the Pros and Cons of the Sample Average Approximation Method, based on what we have learned so far.
- 3. Shapiro and Philpott Introduction to Stochastic Programming Tutorial.
- 4. Open office hours.

Suggested Readings

Suggested Readings to Accompany Today's Lecture

A friendly reminder:

"To get as much out of this class as possible, we suggest that you spend at least as much time on reading the papers and textbooks referenced in the lectures/reviewing the lectures as you spend in class." — The syllabus A friendly reminder:

"To get as much out of this class as possible, we suggest that you spend at least as much time on reading the papers and textbooks referenced in the lectures/reviewing the lectures as you spend in class." — The syllabus

Recommended reading:

• Shapiro, Dentcheva, Ruszczynski *Lectures on Stochastic Programming: Modeling and Theory* (2013), Chapters 1.1 and 2.

Optional further reading:

- Recht *Lecture* 1. In CS294 The Mathematics of Data Science lecture notes, UC Berkeley (2013).
- Kim, Pasupathy, Henderson *A Guide to Sample-Average Approximation*. In: Handbook of simulation optimization (2015).

Let's wrap up here

Figure 3: There's *always* a relevant XKCD

Thank you, and see you next week!