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Some Housekeeping

• Reminder: Please name paper you are presenting for critical paper

review and week you are presenting in (by email to me) by Friday.

• HW1 is now out, due in 2 weeks (see Insendi)—brief discussion of

HW questions.

• Please use office hours, and don’t leave it to the last minute.

• My next office hours are today 3-4pm.
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Warm-Up: Solve This Problem

min
x1,x2

x1 + x2

s.t. ω1x1 + x2 ≥ 7

ω2x1 + x2 ≥ 4

x1, x2 ≥ 0

Where ω1 ∼ U [1, 4], ω2 ∼ U [1/3, 1]

This problem is not well-enough defined to solve

First, we don’t know how ω1, ω2 depend on each other.
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• Do we pick x , then Nature picks ω, or vice versa?

• First case: want to be feasible w.p.1., so minimizing x1 + x2 with

x1 + x2 ≥ 7, giving optimal solution of (0, 7) with cost 7

• Second case: more complicated casewise analysis (exercise)

Conclusion: Terminology matters, should define everything carefully!
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Outline of Lecture 2

Motivation: Ordinary Least Squares Regression

Sample Average Approximation: Theory

Newsvendor: A Special Case That We Can Solve

The General Problem

Sample Average Approximation: Algorithmics

Can we do Better? Ridge Regression and Sample-Average Approximation

Activities for if we Finish Early

Suggested Readings
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Motivation: Ordinary Least

Squares Regression



Linear Regression Setup—Rearranging

Linear regression: n i.i.d. observations of p-dimensional input vector x
and output y , {(xi , yi )}ni=1. We believe input-output follows model

y = x⊤βtrue + ϵ, where βtrue fixed vector, ϵ i.i.d. zero-mean noise.

How to estimate β? Typical answer: minimize OLS error

β̂ ∈ arg min
β∈Rp

n∑
i=1

(yi − x⊤
i β)2

After some calculus

β̂ = (X⊤X )†X⊤y ,

where A† denotes pseudoinverse of A. Assume p fixed, n > p

β̂ = (X⊤X )†X⊤y =︸︷︷︸
substitute y=Xβ+ϵ

βtrue + (X⊤X )†X⊤ϵ
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Aside: Matrix Pseudoinverses

If X a matrix with singular value decomposition X = UΣV⊤

Then X = UΣ†V⊤ where Σ† is a diagonal matrix where we invert all

non-zero diagonal entries, keep zeroes as zeroes.

For a symmetric matrix like X⊤X , can define

(X⊤X )† := lim
λ→0

(X⊤X + λI)−1.

See the book “Matrix Analysis” by Horn and Johnson.
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Reminder: Almost Sure Convergence

Almost Sure Definition

Let (Ω,F ,P) be a probability space and let {Xi}i∈N,X be random

variables. Suppose that A ∈ F is a measurable set such that P(A) = 1

and for all ω ∈ A we have

Xi (ω) → X (ω).

Then, we say that Xi
a.s.→ X .
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Reminder: Continuous Mapping Theorem

Continuous Mapping Theorem

Let Xi ,X be random variables. Suppose that Xi
a.s.→ X and f is

continuous almost everywhere. Then

f (Xi )
a.s.→ f (X )
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Asymptotics of Linear Regression

Consider our rearranged equation:

β̂ = (X⊤X )†X⊤y = βtrue + (X⊤X )†X⊤ϵ

As n → ∞, what happens to β̂?

• SLLN 1
nXX⊤ a.s.→ E[xix⊤

i ]

• SLLN 1
nX

⊤ϵ
a.s.→ 0

• Therefore β̂
a.s.→ βtrue

Figure 1: Thanos Explains Empirical Risk Minimization
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What did we just do?

• We solved our first stochastic optimization problem!

• Given sample of n data points (xi , yi ), estimate model β by (1)

writing down stochastic optimization problem

β̂ = argmin
β

Ex,y [(y − x⊤β)2]

find estimator with least variance, (2) treating each obs. as equally

likely, replacing expectation with sample-average approximation

min
β

n∑
i=1

1

n
(yi − x⊤

i β)2

• We showed β̂ almost surely converges to βtrue as n → ∞
• So supervised learning is special case of stochastic optimization!

• This would take a ML class 3-4 lectures; let’s take a breath here!

• Plan for lecture: Show holds more generally, how to solve SAA
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Let’s break for five minutes here
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Sample Average Approximation:

Theory



Let’s warm up with a special case
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Hot off the Press: The Newsvendor Problem

• A newsvendor (newspaper salesperson) needs to decide how many

newspapers x to buy to maximize their profit

• She doesn’t know how many newspapers there are demand for, Dω

in scenario ω. But she does know the probability distribution of Dω

• Each newspaper costs c , can be sold for q if there is demand

• Unsold newspapers get thrown in the recycling bin

• How to optimally set x?
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Hot off the Press: The Newsvendor Problem

max
x≥0

Eω[min(Dω, x)q − cx ]

Two cases: x > Dω or x ≤ Dω. Rewrite using conditional expectations

max
x≥0

Eω[Dωq − cx |x ≤ Dω]P(x ≤ Dω) + Eω[qx − cx |x > Dω]P(x > Dω)

This is convex in x , so differentiate with respect to x , require that 0 in

subgradient.

Eventually get

x⋆ ∈ F−1
Dω

(
q − c

q

)
That is, a (q−c)

q th quantile of Dω

Insight: setting x equal to E[Dω] could be bad, especially if q ≫ c
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The General Problem
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Overall Problem Setting: Two-Stage Stochastic Linear Opt

Consider stochastic optimization problem:

min
x∈Rn

c⊤x + Eω[h(x ,ω)]

s.t. Ax ≤ b

where

h(x ,ω) := min
y(ω)

q(ω)⊤y(ω)

s.t. D(ω)x + F (ω)y(ω) ≤ d (ω)

• x are our first-stage (or here-and-now) decision variables, which we

select before nature picks ω

• ω are the random variables selected by nature, according to their

joint probability distribution (assumed to be known)

• y(ω) are our second-stage (or wait-and-see, or recourse) decision

variables, that we are allowed to pick after nature picks ω

• A linear optimization problem with random parameters
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What Makes This Problem Hard?

• Complexity Theory: Solving this problem is #P-hard

• See Hanasusanto et al. (Math. Prog., 2016) for a proof

• Who knows what this means?

• As hard as counting number of solutions to NP-hard problem

• I once heard someone say “Judging a problem by its complexity is

like judging someone by the worst thing they have ever done”

—In and of itself, #P-hard doesn’t mean intractable

• Numerically: Expectations hard to evaluate in high-dim settings

Figure 2: Dickens explains the curse of dimensionality

• Structure of Optimal Solutions: In general, y a function of ω
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Sample Average Approximation to the Rescue

Let’s play same game as in the linear regression case!

Replace (unknown) expectation over ω with expectation over empirical

distribution ωi . With n observations of ω, or n “scenarios”, solve:

x̂ ∈ arg min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

Why is this a good thing to do? Justifications:

• Joint distribution over ω only exists in our imagination, while

empirical distribution constructed from data, which is real

• As n → ∞, for i.i.d. ωi , x̂ almost surely converges to a minimizer of

our two-stage problem under true joint distribution of ω

• Who can tell me why we use “argmin” and “a minimizer” here?

17



Sample Average Approximation to the Rescue

Let’s play same game as in the linear regression case!

Replace (unknown) expectation over ω with expectation over empirical

distribution ωi . With n observations of ω, or n “scenarios”, solve:

x̂ ∈ arg min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

Why is this a good thing to do? Justifications:

• Joint distribution over ω only exists in our imagination, while

empirical distribution constructed from data, which is real

• As n → ∞, for i.i.d. ωi , x̂ almost surely converges to a minimizer of

our two-stage problem under true joint distribution of ω

• Who can tell me why we use “argmin” and “a minimizer” here?

17



Sample Average Approximation to the Rescue

Let’s play same game as in the linear regression case!

Replace (unknown) expectation over ω with expectation over empirical

distribution ωi . With n observations of ω, or n “scenarios”, solve:

x̂ ∈ arg min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

Why is this a good thing to do?

Justifications:

• Joint distribution over ω only exists in our imagination, while

empirical distribution constructed from data, which is real

• As n → ∞, for i.i.d. ωi , x̂ almost surely converges to a minimizer of

our two-stage problem under true joint distribution of ω

• Who can tell me why we use “argmin” and “a minimizer” here?

17



Sample Average Approximation to the Rescue

Let’s play same game as in the linear regression case!

Replace (unknown) expectation over ω with expectation over empirical

distribution ωi . With n observations of ω, or n “scenarios”, solve:

x̂ ∈ arg min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

Why is this a good thing to do? Justifications:

• Joint distribution over ω only exists in our imagination, while

empirical distribution constructed from data, which is real

• As n → ∞, for i.i.d. ωi , x̂ almost surely converges to a minimizer of

our two-stage problem under true joint distribution of ω

• Who can tell me why we use “argmin” and “a minimizer” here?

17



Sample Average Approximation to the Rescue

Let’s play same game as in the linear regression case!

Replace (unknown) expectation over ω with expectation over empirical

distribution ωi . With n observations of ω, or n “scenarios”, solve:

x̂ ∈ arg min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

Why is this a good thing to do? Justifications:

• Joint distribution over ω only exists in our imagination, while

empirical distribution constructed from data, which is real

• As n → ∞, for i.i.d. ωi , x̂ almost surely converges to a minimizer of

our two-stage problem under true joint distribution of ω

• Who can tell me why we use “argmin” and “a minimizer” here?

17



Sample Average Approximation to the Rescue

Let’s play same game as in the linear regression case!

Replace (unknown) expectation over ω with expectation over empirical

distribution ωi . With n observations of ω, or n “scenarios”, solve:

x̂ ∈ arg min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

Why is this a good thing to do? Justifications:

• Joint distribution over ω only exists in our imagination, while

empirical distribution constructed from data, which is real

• As n → ∞, for i.i.d. ωi , x̂ almost surely converges to a minimizer of

our two-stage problem under true joint distribution of ω

• Who can tell me why we use “argmin” and “a minimizer” here?

17



Almost Sure Convergence Proof (Sketch)

• Define a sample-average function, redefine expected value

ĝN(x) := min
y(ωi )

c⊤x +
1

N

n∑
i=1

h(x ,ωi ),

g(x) :=min
y(ω)

Eω[c⊤x +
1

N

n∑
i=1

h(x ,ω)]

18



Aside

h is the optimal value of a minimization problem. Why is it convex?

h(x ,ω) := min
y(ω)

q(ω)⊤y(ω) s.t. D(ω)x + F (ω)y(ω) ≤ d (ω)

Duality!

h(x ,ω) = max
µ(ω)

(d (ω)− D(ω)x)⊤µ(ω) s.t. F (ω)⊤µ(ω) = q(ω),µ(ω) ≤ 0

h(x ,ω) is the pointwise maximum of functions linear in x , hence convex

Pointwise maximum also reveals h is continuous on its domain

19
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Almost Sure Convergence Proof (Sketch)

• Define a sample-average function, redefine expected value

ĝN(x) :=c⊤x +
1

N

N∑
i=1

h(x ,ωi ),

g(x) :=c⊤x + Eω[h(x ,ω)]

• By SLLN, continuity of gN , g : gN(x)
a.s.→ g(x) ∀x : Ax ≤ b

• Therefore, (under mild conditions1), infx gN(x)
a.s.→ infx g(x)

1See Corollary 3 of “Monte Carlo Sampling Methods” by Shapiro (2003) for details.
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When Things go Wrong, as They Sometimes Will

Let’s look at our sample-average approximation again:

x̂ ∈ arg min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

What can go wrong?

In practice, we have a finite number of

observations. That means:

• x̂ may not be feasible for unseen ω’s

• Can include all extreme points of joint dist of ω, or if h(x ,ωi ) is

(almost surely) feasible for any x—(relatively) complete recourse

• x̂N might be far from x⋆, especially if N small relative to dim of x
• A motivation for distributionally robust optimization—see later
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Let’s break for five minutes.

Then talk about how to solve these problems

21



Sample Average Approximation:

Algorithmics



First Strategy: Solve the Deterministic Equivalent

We can view the sample-average approximation as one big linear

optimization problem and throw it to Mosek or Gurobi

• Make a copy of y i for each scenario ωi and solve

x̂ ∈ arg min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

• Pros: very quick to code, if it works, then we are done

• Good first thing to try

• Cons: this optimization problem might be big. Really big

• Example: electricity market with random demand at 20 nodes that

can independently be “low” or “high” That’s 220 = 1048576 copies

of y , which is intractable for a real market

• Still, you can sometimes do well by subsampling the scenarios

(Shapiro and Homem-de-Mello, 1998)
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Second Strategy: Decompose the Problem

What optimizers usually do: use a decomposition scheme called Benders

decomposition (sometimes called the “L-shaped” method)

Consider

min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

Let θ ≥ 1
n

∑n
i=1 h(x ,ω

i ) be an epigraph variable

23
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Second Strategy: Decompose the Problem

min
x∈Rn,θ

c⊤x + θ

s.t. Ax ≤ b.

(Sketch) We iteratively

• Solve this “master” problem to find an optimal x
• Evaluate 1/n

∑n
i=1 h(x ,ω

i ) and add inequalities which model

• θ ≥ 1
n

∑n
i=1 h(x ,ω

i )

• For x to be feasible, there is a feasible y(ωi ) in each scenario ωi

until we converge. We never model y(ωi ), so we replaced one intractable

problem with a sequence of (possibly many) tractable ones

Remark: About to go through how this works in gory detail. However, I

find the best way to understand this method is to code it for yourself.
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Benders Decomposition

Suppose we solve

min
x∈Rn,θ

c⊤x + θ

s.t. Ax ≤ b.

and obtain some solution x . Two cases:

• There is some scenario ωi for which no y(ω) can make the scenario

feasible → we need to tell the master problem that this x is

infeasible, via a feasibility cut

• Every scenario ωi is feasible → we need to tell the master problem

how much x costs via an optimality cut
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Benders Decomposition: Feasibility Cut

Suppose we solve

min
x∈Rn,θ

c⊤x + θ

s.t. Ax ≤ b.

and obtain some solution x such that in scenario i no y(ω) can make the

scenario feasible.

Then, the dual problem in this scenario is unbounded

(why?), so there is some µ(ωi ) such that

(d (ω)− D(ω)x)⊤µ(ω) > 0, F (ω)⊤µ(ω) = q(ω),µ(ω) ≤ 0.

Therefore, we fix µ(ωi ) and impose the feasibility cut

(d (ωi )− D(ωi )x)⊤µ(ωi ) ≤ 0,

in the master problem, where everything but x is data
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In This Case, The Master Problem Now Looks Like

min
x∈Rn,θ

c⊤x + θ

s.t. Ax ≤ b,

(d (ωi )− D(ωi )x)⊤µ(ωi ) ≤ 0.
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Case Two: Each Scenario Was Feasible

θ has usually underestimated 1/n
∑n

i=1 h(x ,ω
i )

Need cut involving θ, which tells master problem what x costs

By strong duality

1

n

n∑
i=1

h(x ,ωi ) = 1/n
n∑

i=1

(d (ωi )− D(ωi )x)⊤µ(ωi ),

where µ(ωi ), dual-optimal in scenario i , is data

By weak duality, for any x̄

1

n

n∑
i=1

h(x̄ ,ωi ) ≥ 1

n

n∑
i=1

(d (ωi )− D(ωi )x̄)⊤µ(ωi ),

where everything but x̄ is data

Therefore, we add cut

θ ≥ 1

n

n∑
i=1

(d (ωi )− D(ωi )x̄)⊤µ(ωi )
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The Master Problem Might Now Look Like

min
x∈Rn,θ

c⊤x + θ

s.t. Ax ≤ b,

θ ≥ 1

n

n∑
i=1

(d (ωi )− D(ωi )x̄)⊤µ(ωi ),

(d (ωi )− D(ωi )x)⊤µ(ωi ) ≤ 0.
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Benders Decomposition, in 1000 words

f (x)
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Sample Average Approximation: Code

You will write this yourself in the first

assignment :-)
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Can we do Better? Ridge

Regression and Sample-Average

Approximation



Can we do Better Than the Sample-Average

Approximation?

30



Returning to Linear Regression

Statisticians don’t solve problems like

min
β∈Rp

1

n
∥Xβ − y∥22

to pick β, despite SAA’s properties. Why not?

Because n is finite; we want β to perform as well as possible on an

unseen observation (xi , yi ), not just minimize training error.They solve

min
β∈Rp

1

n
∥Xβ − y∥22 + R(β),

where R(·) is a regularization term, e.g., 1
2γ ∥β∥

2
2 + λ∥β∥1 for

appropriately chosen λ, γ (elastic net method, Zou and Hastie 2005).

This usually performs better out-of-sample.
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What’s That Gotta Do With The Price of Fish?

• In the 2000s, sample-average approximation was a very popular

method for optimizing under uncertainty

• In the early 2010s, the community became more aware of the danger

of overfitting. Since then, variants of SAA that account for

overfitting with better finite-sample guarantees have become popular

• We still teach SAA, because you need to understand SAA first

• Variants intimately related to distributional robustness, so we’ll

come back to them later

• Google “Robust SAA” by Bertsimas et al. (Math. Prog. 2017)
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Extension: Accelerating Benders Decomposition for Facility Lo-

cation

See slides by Fischetti (2017)
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Activities for if we Finish Early



Either Prove or Provide a Counterexample for the Following

Statements

• The intersection of convex sets is convex.

• The union of convex sets is convex.

• All polyhedral sets are convex.
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Some (Classically) Useful Terms

• Value of Stochastic Solution.

• Value of Perfect Information.
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(More) Activities for if we Finish Early

1. HW1 Q0.

2. Class discussion: Summarize the Pros and Cons of the Sample

Average Approximation Method, based on what we have learned so

far.

3. Shapiro and Philpott Introduction to Stochastic Programming

Tutorial.

4. Open office hours.
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Suggested Readings
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Suggested Readings to Accompany Today’s Lecture

A friendly reminder:

“To get as much out of this class as possible, we suggest that you

spend at least as much time on reading the papers and textbooks

referenced in the lectures/reviewing the lectures as you spend in

class.” — The syllabus

Recommended reading:

• Shapiro, Dentcheva, Ruszczynski Lectures on Stochastic

Programming: Modeling and Theory (2013), Chapters 1.1 and 2.

Optional further reading:

• Recht Lecture 1. In CS294 The Mathematics of Data Science

lecture notes, UC Berkeley (2013).

• Kim, Pasupathy, Henderson A Guide to Sample-Average

Approximation. In: Handbook of simulation optimization (2015).
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Let’s wrap up here

Figure 3: There’s *always* a relevant XKCD
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Thank you, and see you next week!
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