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Some Housekeeping

• Reminder: Please name the paper you are presenting for critical

paper review and the week you are presenting in (by email to me) by

Friday.

• HW1 is now out, due on 2 Feb (see Insendi)—brief discussion of HW

questions.

• I’ll set aside some time at the end of the Monday Week 4 lecture, in

case you have questions on the homework then.
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Warm-Up: Solve This Problem

min
x1,x2

x1 + x2

s.t. ω1x1 + x2 ≥ 7

ω2x1 + x2 ≥ 4

x1, x2 ≥ 0

Where ω1 ∼ U [1, 4], ω2 ∼ U [1/3, 1]

This problem is not well-enough defined to solve

First, we don’t know how ω1, ω2 depend on each other.
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min
x1,x2

x1 + x2

s.t. ω1x1 + x2 ≥ 7

ω2x1 + x2 ≥ 4

x1, x2 ≥ 0

Where ω1 ∼ U [1, 4], ω2 ∼ U [1/3, 1] are independent

This problem is not well-enough defined to solve

First, we don’t know how ω1, ω2 depend on each other. Assume

independent
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Warm-Up: Solve This Problem

min
x1,x2

x1 + x2

s.t. ω1x1 + x2 ≥ 7, ω2x1 + x2 ≥ 4, x1, x2 ≥ 0

Where ω1 ∼ U [1, 4], ω2 ∼ U [1/3, 1] are independent

This problem is not well-enough defined to solve

First, we don’t know how ω1, ω2 depend on each other. Assume

independent

Second, we don’t know how x1, x2 depend on ω:

• Do we pick x , then Nature picks ω, or vice versa?

• First case: want to be feasible w.p.1., so minimizing x1 + x2 with

x1 + x2 ≥ 7, giving optimal solution of (0, 7) with cost 7

• Second case: more complicated casewise analysis (exercise)

Conclusion: Terminology matters; should define everything carefully!
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Outline of Lecture 2

Motivation: Ordinary Least Squares Regression

Sample Average Approximation: Theory

Newsvendor: A Special Case That We Can Solve

The General Problem

Sample Average Approximation: Algorithmics

Can we do Better? Ridge Regression and Sample-Average Approximation

Suggested Readings
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Motivation: Ordinary Least

Squares Regression



Linear Regression Setup—Rearranging

Linear regression: n i.i.d. observations of p-dimensional input vector x
and output y , {(xi , yi )}ni=1. We believe input-output follows model

y = x⊤βtrue + ϵ, where βtrue fixed vector, ϵ i.i.d. zero-mean noise.

How to estimate β? Typical answer: minimize OLS error

β̂ ∈ arg min
β∈Rp

n∑
i=1

(yi − x⊤
i β)2

After some calculus

β̂ = (X⊤X )†X⊤y ,

where A† denotes pseudoinverse of A. Assume p fixed, n > p

β̂ = (X⊤X )†X⊤y =︸︷︷︸
substitute y=Xβtrue+ϵ

βtrue + (X⊤X )†X⊤ϵ
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Aside: Matrix Pseudoinverses

If X a matrix with singular value decomposition X = UΣV⊤

Then X † = VΣ†U⊤ where Σ† is a diagonal matrix where we invert all

non-zero diagonal entries, keep zeroes as zeroes.

For a symmetric matrix like X⊤X , can define

(X⊤X )† := lim
λ→0

(X⊤X + λI)−1X⊤.

See the book “Matrix Analysis” by Horn and Johnson.

8



Reminder: Almost Sure Convergence

Almost Sure Definition

Let (Ω,F ,P) be a probability space and let {Xi}i∈N,X be random

variables. Suppose that A ∈ F is a measurable set such that P(A) = 1

and for all ω ∈ A we have

Xi (ω) → X (ω).

Then, we say that Xi
a.s.→ X .
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Reminder: Continuous Mapping Theorem

Continuous Mapping Theorem

Let Xi ,X be random variables. Suppose that Xi
a.s.→ X and f is

continuous almost everywhere. Then

f (Xi )
a.s.→ f (X )
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Asymptotics of Linear Regression

Consider our rearranged equation:

β̂ = (X⊤X )†X⊤y = βtrue + (X⊤X )†X⊤ϵ

As n → ∞, what happens to β̂?

• SLLN 1
nXX⊤ a.s.→ E[xix⊤

i ]

• SLLN 1
nX

⊤ϵ
a.s.→ 0

• Therefore β̂
a.s.→ βtrue (under some mild conditions on span of

E[xix⊤
i ] etc.)

11



Asymptotics of Linear Regression

Consider our rearranged equation:

β̂ = (X⊤X )†X⊤y = βtrue + (X⊤X )†X⊤ϵ

As n → ∞, what happens to β̂?

• SLLN 1
nXX⊤ a.s.→ E[xix⊤

i ]

• SLLN 1
nX

⊤ϵ
a.s.→ 0

• Therefore β̂
a.s.→ βtrue (under some mild conditions on span of

E[xix⊤
i ] etc.)

11



Asymptotics of Linear Regression

Consider our rearranged equation:

β̂ = (X⊤X )†X⊤y = βtrue + (X⊤X )†X⊤ϵ

As n → ∞, what happens to β̂?

• SLLN 1
nXX⊤ a.s.→ E[xix⊤

i ]

• SLLN 1
nX

⊤ϵ
a.s.→ 0

• Therefore β̂
a.s.→ βtrue (under some mild conditions on span of

E[xix⊤
i ] etc.)

11



What did we just do?

• We solved our first stochastic optimization problem!

• Given sample of n data points (xi , yi ), estimate model β by (1)

writing down stochastic optimization problem

β̂ = argmin
β

Ex,y [(y − x⊤β)2]

find estimator with least variance, (2) treating each obs. as equally

likely, replacing expectation with sample-average approximation

min
β

n∑
i=1

1

n
(yi − x⊤

i β)2

• We showed β̂ almost surely converges to βtrue as n → ∞
• So supervised learning is special case of stochastic optimization!

• This would take a ML class 3-4 lectures; let’s take a breath here!

• Plan for lecture: Show holds more generally, how to solve SAA
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Sample Average Approximation:

Theory



Let’s warm up with a special case
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Hot off the Press: The Newsvendor Problem

• A newsvendor (newspaper salesperson) needs to decide how many

newspapers x to buy to maximize their profit

• She doesn’t know how many newspapers there are demand for, Dω

in scenario ω. But she does know the probability distribution of Dω

• Each newspaper costs c , can be sold for q if there is demand

• Unsold newspapers get thrown in the recycling bin

• How to optimally set x?
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Hot off the Press: The Newsvendor Problem

max
x≥0

Eω[min(Dω, x)q − cx ]

Two cases: x > Dω or x ≤ Dω. Rewrite using conditional expectations

max
x≥0

Eω[Dωq − cx |x ≤ Dω]P(x ≤ Dω) + Eω[qx − cx |x > Dω]P(x > Dω)

This is convex in x , so differentiate with respect to x , require that 0 in

subgradient.

Eventually get

x⋆ ∈ F−1
Dω

(
q − c

q

)
That is, a (q−c)

q th quantile of Dω

Insight: setting x equal to E[Dω] could be bad, especially if q ≫ c
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The General Problem
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Overall Problem Setting: Two-Stage Stochastic Linear Opt

Consider stochastic optimization problem:

min
x∈Rn

c⊤x + Eω[h(x ,ω)]

s.t. Ax ≤ b

where

h(x ,ω) := min
y(ω)

q(ω)⊤y(ω)

s.t. D(ω)x + F (ω)y(ω) ≤ d (ω)

• x are our first-stage (or here-and-now) decision variables, which we

select before nature picks ω

• ω are the random variables selected by nature, according to their

joint probability distribution (assumed to be known)

• y(ω) are our second-stage (or wait-and-see, or recourse) decision

variables, that we are allowed to pick after nature picks ω

• A linear optimization problem with random parameters

15



Overall Problem Setting: Two-Stage Stochastic Linear Opt

Consider stochastic optimization problem:

min
x∈Rn

c⊤x + Eω[h(x ,ω)]

s.t. Ax ≤ b

where

h(x ,ω) := min
y(ω)

q(ω)⊤y(ω)

s.t. D(ω)x + F (ω)y(ω) ≤ d (ω)

• x are our first-stage (or here-and-now) decision variables, which we

select before nature picks ω

• ω are the random variables selected by nature, according to their

joint probability distribution (assumed to be known)

• y(ω) are our second-stage (or wait-and-see, or recourse) decision

variables, that we are allowed to pick after nature picks ω

• A linear optimization problem with random parameters

15



Overall Problem Setting: Two-Stage Stochastic Linear Opt

Consider stochastic optimization problem:

min
x∈Rn

c⊤x + Eω[h(x ,ω)]

s.t. Ax ≤ b

where

h(x ,ω) := min
y(ω)

q(ω)⊤y(ω)

s.t. D(ω)x + F (ω)y(ω) ≤ d (ω)

• x are our first-stage (or here-and-now) decision variables, which we

select before nature picks ω

• ω are the random variables selected by nature, according to their

joint probability distribution (assumed to be known)

• y(ω) are our second-stage (or wait-and-see, or recourse) decision

variables, that we are allowed to pick after nature picks ω

• A linear optimization problem with random parameters

15



Overall Problem Setting: Two-Stage Stochastic Linear Opt

Consider stochastic optimization problem:

min
x∈Rn

c⊤x + Eω[h(x ,ω)]

s.t. Ax ≤ b

where

h(x ,ω) := min
y(ω)

q(ω)⊤y(ω)

s.t. D(ω)x + F (ω)y(ω) ≤ d (ω)

• x are our first-stage (or here-and-now) decision variables, which we

select before nature picks ω

• ω are the random variables selected by nature, according to their

joint probability distribution (assumed to be known)

• y(ω) are our second-stage (or wait-and-see, or recourse) decision

variables, that we are allowed to pick after nature picks ω

• A linear optimization problem with random parameters

15



Overall Problem Setting: Two-Stage Stochastic Linear Opt

Consider stochastic optimization problem:

min
x∈Rn

c⊤x + Eω[h(x ,ω)]

s.t. Ax ≤ b

where

h(x ,ω) := min
y(ω)

q(ω)⊤y(ω)

s.t. D(ω)x + F (ω)y(ω) ≤ d (ω)

• x are our first-stage (or here-and-now) decision variables, which we

select before nature picks ω

• ω are the random variables selected by nature, according to their

joint probability distribution (assumed to be known)

• y(ω) are our second-stage (or wait-and-see, or recourse) decision

variables, that we are allowed to pick after nature picks ω

• A linear optimization problem with random parameters

15



Overall Problem Setting: Two-Stage Stochastic Linear Opt

Consider stochastic optimization problem:

min
x∈Rn

c⊤x + Eω[h(x ,ω)]

s.t. Ax ≤ b

where

h(x ,ω) := min
y(ω)

q(ω)⊤y(ω)

s.t. D(ω)x + F (ω)y(ω) ≤ d (ω)

• x are our first-stage (or here-and-now) decision variables, which we

select before nature picks ω

• ω are the random variables selected by nature, according to their

joint probability distribution (assumed to be known)

• y(ω) are our second-stage (or wait-and-see, or recourse) decision

variables, that we are allowed to pick after nature picks ω

• A linear optimization problem with random parameters
15



What Makes This Problem Hard?

• Complexity Theory: Solving this problem is #P-hard

• See Hanasusanto et al. (Math. Prog., 2016) for a proof

• Who knows what this means?

• As hard as counting number of solutions to NP-hard problem

• I once heard someone say “Judging a problem by its complexity is

like judging someone by the worst thing they have ever done”

—In and of itself, #P-hard doesn’t mean intractable

• Structure of Optimal Solutions: In general, y a function of ω
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Sample Average Approximation to the Rescue

Let’s play same game as in the linear regression case!

Replace (unknown) expectation over ω with expectation over empirical

distribution ωi . With n observations of ω, or n “scenarios”, solve:

x̂ ∈ arg min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

Why is this a good thing to do? Justifications:

• Joint distribution over ω only exists in our imagination, while

empirical distribution constructed from data, which is real

• As n → ∞, for i.i.d. ωi , x̂ almost surely converges to a minimizer of

our two-stage problem under true joint distribution of ω

• Who can tell me why we use “argmin” and “a minimizer” here?
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Almost Sure Convergence Proof (Sketch)

• Define a sample-average function, redefine expected value

ĝN(x) := min
y(ωi )

c⊤x +
1

N

n∑
i=1

h(x ,ωi ),

g(x) :=min
y(ω)

Eω[c⊤x +
1

N

n∑
i=1

h(x ,ω)]

18



Aside

h is the optimal value of a minimization problem. Why is it convex?

h(x ,ω) := min
y(ω)

q(ω)⊤y(ω) s.t. D(ω)x + F (ω)y(ω) ≤ d (ω)

Duality!

h(x ,ω) = max
µ(ω)

(d (ω)− D(ω)x)⊤µ(ω) s.t. F (ω)⊤µ(ω) = q(ω),µ(ω) ≤ 0

h(x ,ω) is the pointwise maximum of functions linear in x , hence convex

Pointwise maximum also reveals h is continuous on its domain

19
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Almost Sure Convergence Proof (Sketch)

• Define a sample-average function, redefine expected value

ĝN(x) :=c⊤x +
1

N

N∑
i=1

h(x ,ωi ),

g(x) :=c⊤x + Eω[h(x ,ω)]

• By SLLN, continuity of gN , g : gN(x)
a.s.→ g(x) ∀x : Ax ≤ b

• Therefore, (under mild conditions1), infx gN(x)
a.s.→ infx g(x)

1See Corollary 3 of “Monte Carlo Sampling Methods” by Shapiro (2003) for details.
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When Things go Wrong, as They Sometimes Will

Let’s look at our sample-average approximation again:

x̂ ∈ arg min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

What can go wrong?

In practice, we have a finite number of

observations. That means:

• x̂ may not be feasible for unseen ω’s

• Can include all extreme points of joint dist of ω, or if h(x ,ωi ) is

(almost surely) feasible for any x—(relatively) complete recourse

• x̂N might be far from x⋆, especially if N small relative to dim of x
• A motivation for distributionally robust optimization—see later
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Let’s break for five minutes.

Then talk about how to solve these problems

21



Sample Average Approximation:

Algorithmics



First Strategy: Solve the Deterministic Equivalent

We can view the sample-average approximation as one big linear

optimization problem and throw it to Mosek or Gurobi

• Make a copy of y i for each scenario ωi and solve

x̂ ∈ arg min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

• Pros: very quick to code, if it works, then we are done

• Good first thing to try

• Cons: this optimization problem might be big. Really big

• Example: electricity market with random demand at 20 nodes that

can independently be “low” or “high” That’s 220 = 1048576 copies

of y , which is intractable for a real market

• Still, you can sometimes do well by subsampling the scenarios

(Shapiro and Homem-de-Mello, 1998)
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Second Strategy: Decompose the Problem

What optimizers usually do: use a decomposition scheme called Benders

decomposition (sometimes called the “L-shaped” method)

Consider

min
x∈Rn

c⊤x +
1

n

n∑
i=1

h(x ,ωi )

s.t. Ax ≤ b

Let θ ≥ 1
n

∑n
i=1 h(x ,ω

i ) be an epigraph variable
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Second Strategy: Decompose the Problem

min
x∈Rn,θ

c⊤x + θ

s.t. Ax ≤ b.

(Sketch) We iteratively

• Solve this “master” problem to find an optimal x
• Evaluate 1/n

∑n
i=1 h(x ,ω

i ) and add inequalities which model

• θ ≥ 1
n

∑n
i=1 h(x ,ω

i )

• For x to be feasible, there is a feasible y(ωi ) in each scenario ωi

until we converge. We never model y(ωi ), so we replaced one intractable

problem with a sequence of (possibly many) tractable ones

Remark: About to go through how this works in gory detail. However, I

find the best way to understand this method is to code it for yourself.
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Second Strategy: Decompose the Problem

min
x∈Rn,θ

c⊤x + θ

s.t. Ax ≤ b.
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• Solve this “master” problem to find an optimal x
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∑n
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Benders Decomposition

Suppose we solve

min
x∈Rn,θ

c⊤x + θ

s.t. Ax ≤ b.

and obtain some solution x . Two cases:

• There is some scenario ωi for which no y(ω) can make the scenario

feasible → we need to tell the master problem that this x is

infeasible, via a feasibility cut

• Every scenario ωi is feasible → we need to tell the master problem

how much x costs via an optimality cut
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Benders Decomposition: Feasibility Cut

Suppose we solve

min
x∈Rn,θ

c⊤x + θ

s.t. Ax ≤ b.

and obtain some solution x such that in scenario i no y(ω) can make the

scenario feasible.

Then, the dual problem in this scenario is unbounded

(why?), so there is some µ(ωi ) such that

(d (ω)− D(ω)x)⊤µ(ω) > 0, F (ω)⊤µ(ω) = 0,µ(ω) ≤ 0.

Therefore, we fix µ(ωi ) and impose the feasibility cut

(d (ωi )− D(ωi )x)⊤µ(ωi ) ≤ 0,

in the master problem, where everything but x is data
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In This Case, The Master Problem Now Looks Like

min
x∈Rn,θ

c⊤x + θ

s.t. Ax ≤ b,

(d (ωi )− D(ωi )x)⊤µ(ωi ) ≤ 0.
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Case Two: Each Scenario Was Feasible

θ usually underestimates 1/n
∑n

i=1 h(x ,ω
i )

Need cut involving θ, which tells master problem what x costs

By strong duality

1

n

n∑
i=1

h(x ,ωi ) = 1/n
n∑

i=1

(d (ωi )− D(ωi )x)⊤µ(ωi ),

where µ(ωi ), dual-optimal in scenario i , is data

By weak duality, for any x̄

1

n

n∑
i=1

h(x̄ ,ωi ) ≥ 1

n

n∑
i=1

(d (ωi )− D(ωi )x̄)⊤µ(ωi ),

where everything but x̄ is data

Therefore, we add cut

θ ≥ 1

n

n∑
i=1

(d (ωi )− D(ωi )x)⊤µ(ωi )
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The Master Problem Might Now Look Like

min
x∈Rn,θ

c⊤x + θ

s.t. Ax ≤ b,

θ ≥ 1

n

n∑
i=1

(d (ωi )− D(ωi )x)⊤µ(ωi ),

(d (ωi )− D(ωi )x)⊤µ(ωi ) ≤ 0.
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Benders Decomposition, in 1000 words

f (x)
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Sample Average Approximation: Code

You will write this yourself in the first

assignment :-)

30



Can we do Better? Ridge

Regression and Sample-Average

Approximation



Can we do Better Than the Sample-Average

Approximation?

30



Returning to Linear Regression

Statisticians don’t solve problems like

min
β∈Rp

1

n
∥Xβ − y∥22

to pick β, despite SAA’s properties. Why not?

Because n is finite; we want β to perform as well as possible on an

unseen observation (xi , yi ), not just minimize training error.They solve

min
β∈Rp

1

n
∥Xβ − y∥22 + R(β),

where R(·) is a regularization term, e.g., 1
2γ ∥β∥

2
2 + λ∥β∥1 for

appropriately chosen λ, γ (elastic net method, Zou and Hastie 2005).

This usually performs better out-of-sample.
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How is This Related to SAA?

• In the 2000s, sample-average approximation was a very popular

method for optimizing under uncertainty

• In the early 2010s, the community became more aware of the danger

of overfitting, and in particular that SAA tends to be overly

optimistic w.r.t. its out-of-sample performance. Since then, variants

of SAA that account for overfitting with better finite-sample

guarantees have become popular

• We still teach SAA, because you need to understand SAA first

• Variants intimately related to distributional robustness (see Lecture

8)

• For more on this, see: Bertsimas, Dimitris, Vishal Gupta, and

Nathan Kallus. ”Robust sample average approximation.”

Mathematical Programming 171.1 (2018): 217-282.
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Extension: Benders Decomposition for Facility Location

See slides by Fischetti (2017)
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Suggested Readings

33



Suggested Readings to Accompany Today’s Lecture

A friendly reminder:

“To get as much out of this class as possible, we suggest that you

spend at least as much time on reading the papers and textbooks

referenced in the lectures/reviewing the lectures as you spend in

class.” — The syllabus

Recommended reading:

• Shapiro, Dentcheva, Ruszczynski Lectures on Stochastic

Programming: Modeling and Theory (2013), Chapters 1.1 and 2.

Optional further reading:

• Recht Lecture 1. In CS294 The Mathematics of Data Science

lecture notes, UC Berkeley (2013).

• Kim, Pasupathy, Henderson A Guide to Sample-Average

Approximation. In: Handbook of simulation optimization (2015).
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Thank you, and see you next week!
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