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paper review and the week you are presenting in (by email to me) by
Friday.

e HW1 is now out, due on 2 Feb (see Insendi)—brief discussion of HW
questions.

e |'ll set aside some time at the end of the Monday Week 4 lecture, in
case you have questions on the homework then.
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Warm-Up: Solve This Problem

min X1 + Xo
X1,X2

st. wixi+x>7, waxi+x2 >4, x1,x2 >0

Where wy ~ U[1, 4],ws ~ U[1/3,1] are independent
This problem is not well-enough defined to solve

First, we don’t know how w1, wy depend on each other. Assume
independent
Second, we don’t know how x;, x» depend on w:

e Do we pick x, then Nature picks w, or vice versa?

e First case: want to be feasible w.p.1., so minimizing x; + x> with
x1 + x > 7, giving optimal solution of (0,7) with cost 7

e Second case: more complicated casewise analysis (exercise)

Conclusion: Terminology matters; should define everything carefully!



Outline of Lecture 2

Motivation: Ordinary Least Squares Regression

Sample Average Approximation: Theory
Newsvendor: A Special Case That We Can Solve
The General Problem

Sample Average Approximation: Algorithmics

Can we do Better? Ridge Regression and Sample-Average Approximation

Suggested Readings
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Linear Regression Setup—Rearranging

Linear regression: n i.i.d. observations of p-dimensional input vector x
and output y, {(x;,yi)}" ;. We believe input-output follows model
y = X' Brue + €, Wwhere Bye fixed vector, € i.i.d. zero-mean noise.

How to estimate 37 Typical answer: minimize OLS error
n
A . T 312
= - — X
B argﬁ;nelﬂgpz;(y, x; B3)
=
After some calculus
B=(XTX)XTy,
where AT denotes pseudoinverse of A. Assume p fixed, n > p

/é = (XTX)TXT_Y \:/_/ ﬁtrue"‘()(—r)()T)(—re
substitute y=XBue+€



Aside: Matrix Pseudoinverses

If X a matrix with singular value decomposition X = USV "
Then XT = VETUT where =7 is a diagonal matrix where we invert all
non-zero diagonal entries, keep zeroes as zeroes.

For a symmetric matrix like X T X, can define

(XTX) = A|im0(xTx + D)X,
—

See the book “Matrix Analysis” by Horn and Johnson.



Reminder: Almost Sure Convergence

Almost Sure Definition

Let (2, F,P) be a probability space and let {X;};en, X be random
variables. Suppose that A € F is a measurable set such that P(A) =1
and for all w € A we have

Xi(w) = X(w).

Then, we say that X; 2 X.



Reminder: Continuous Mapping Theorem

Continuous Mapping Theorem

Let X;, X be random variables. Suppose that X; 23 X and f is
continuous almost everywhere. Then

F(X) 2% f(X)

10



Asymptotics of Linear Regression
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B=(X"X)XTy =B+ (X X)'XTe

As n — 0o, what happens to ,é?
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Asymptotics of Linear Regression

Consider our rearranged equation:
B=(X"X)XTy =B+ (X X)'XTe
As n — 0o, what happens to ,é?

e SLLN 1XXT 25 E[x;x]
e SLLN 1XTe 23 0

e Therefore ,6' =53 Btrue (under some mild conditions on span of
E[x;x;"] etc.)

11
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What did we just do?

e We solved our first stochastic optimization problem!

e Given sample of n data points (x;, y;), estimate model 3 by (1)
writing down stochastic optimization problem

B =arg mﬁin Exy[(y — x' )’

find estimator with least variance, (2) treating each obs. as equally
likely, replacing expectation with sample-average approximation

n

. 1l T 2\2
min > 2 x7p)

B
i=1

e We showed [3 almost surely converges to Siue as n — 00
e So supervised learning is special case of stochastic optimization!
e This would take a ML class 3-4 lectures; let's take a breath here!

e Plan for lecture: Show holds more generally, how to solve SAA

12



Sample Average Approximation:
Theory




Let’s warm up with a special case



Hot off the Press: The Newsvendor Problem

e A newsvendor (newspaper salesperson) needs to decide how many
newspapers x to buy to maximize their profit
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Hot off the Press: The Newsvendor Problem

A newsvendor (newspaper salesperson) needs to decide how many
newspapers x to buy to maximize their profit

e She doesn’t know how many newspapers there are demand for, D,
in scenario w. But she does know the probability distribution of D,

e Each newspaper costs ¢, can be sold for g if there is demand
e Unsold newspapers get thrown in the recycling bin

e How to optimally set x?

13
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Hot off the Press: The Newsvendor Problem

Tza())(]Ew[mln(Dw.,x)q —cx]
Two cases: x > D,, or x < D,,. Rewrite using conditional expectations
m;aS(Ew[qu — ex|x < Dy)P(x < D,,) + Eu[gx — cx|x > D,|JP(x > D,,)

This is convex in x, so differentiate with respect to x, require that 0 in
subgradient.

Eventually get

1{q—c
X*EFl( )
D., q

That is, a @th quantile of D,
Insight: setting x equal to E[D,] could be bad, especially if g > ¢

14



The General Problem



Overall Problem Setting: Two-Stage Stochastic Linear Opt

Consider stochastic optimization problem:
min ¢’ x 4 E,[h(x,w)]
x€Rn
st. Ax<b
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Overall Problem Setting: Two-Stage Stochastic Linear Opt

Consider stochastic optimization problem:
. T
E,[h
min ¢ x+ Eu[h(x,w)]
st. Ax<b

where
h(x,w) = min a(w) y(w)
st. D(w)x + F(w)y(w) < d(w)

e x are our first-stage (or here-and-now) decision variables, which we
select before nature picks w

e w are the random variables selected by nature, according to their
joint probability distribution (assumed to be known)

y(w) are our second-stage (or wait-and-see, or recourse) decision
variables, that we are allowed to pick after nature picks w

A linear optimization problem with random parameters
15
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What Makes This Problem Hard?

e Complexity Theory: Solving this problem is # P-hard

See Hanasusanto et al. (Math. Prog., 2016) for a proof

Who knows what this means?

As hard as counting number of solutions to NP-hard problem

e | once heard someone say “Judging a problem by its complexity is

like judging someone by the worst thing they have ever done”
—In and of itself, #P-hard doesn’'t mean intractable

e Structure of Optimal Solutions: In general, y a function of w

16
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Sample Average Approximation to the Rescue

Let's play same game as in the linear regression case!
Replace (unknown) expectation over w with expectation over empirical
distribution w;. With n observations of w, or n “scenarios”, solve:

1 ¢ :
x e arg;gl@ c'x+ . Z; h(x,w")
=
st. Ax<b

Why is this a good thing to do? Justifications:

e Joint distribution over w only exists in our imagination, while
empirical distribution constructed from data, which is real

e As n— oo, fori.i.d. w', X almost surely converges to a minimizer of
our two-stage problem under true joint distribution of w

e Who can tell me why we use “argmin” and “a minimizer" here?

17



Almost Sure Convergence Proof (Sketch)

e Define a sample-average function, redefine expected value
n

1 .
Env(x) :=minc'x+ =Y h(x,w'),
y(e)) N =

1n
x):=minEy[c"x + = h(x,w
g(x) ==minEufcx + 5 >~ h(x.w)]

i=1

18
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h is the optimal value of a minimization problem. Why is it convex?

|
- ‘Convexny

TProo f of {
P

HEHE)ES i q(w) " y(w) s.t. D(w)x + F(w)y(w) < d(w)

Duality!
h(x,w) = max (d(w)— D(w)x)" pw(w) s.t. F(w)" p(w) = q(w), w(w) <0

m(w)

h(x,w) is the pointwise maximum of functions linear in x, hence convex

Pointwise maximum also reveals h is continuous on its domain
19



Almost Sure Convergence Proof (Sketch)

e Define a sample-average function, redefine expected value

A oo ly -
an(x) =cTx+ ; h(x,w'),
g(x) =c x+ E,[h(x,w)]

a.s.

e By SLLN, continuity of gy, g: gn(x) = g(x) Vx: Ax < b

1See Corollary 3 of “Monte Carlo Sampling Methods” by Shapiro (2003) for details.
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Almost Sure Convergence Proof (Sketch)

e Define a sample-average function, redefine expected value
1< .
Bn(x) :=c x+ o Zl h(x,w'),
g(x) :=c"x + E,[h(x,w)]

e By SLLN, continuity of gn,g: gn(x) 23 g(x) Vx : Ax < b

e Therefore, (under mild conditions?), inf, gn(x) 23 inf, g(x)

1See Corollary 3 of “Monte Carlo Sampling Methods” by Shapiro (2003) for details.
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When Things go Wrong, as They Sometimes Will

Let's look at our sample-average approximation again:

1 :
A . T i
€ 23" h(x,
X € arg min cx+n; (x,w")
st. Ax<b

What can go wrong?
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1 n
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i=1
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What can go wrong? In practice, we have a finite number of
observations. That means:

e X may not be feasible for unseen w's

e Can include all extreme points of joint dist of w, or if h(x,w') is
(almost surely) feasible for any x—(relatively) complete recourse
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When Things go as They Sometimes Will

Let's look at our sample-average approximation again:

1 :
A . T i
€ 23" h(x,
X € arg min cx+n; (x,w")
st. Ax<b

What can go wrong? In practice, we have a finite number of
observations. That means:

e X may not be feasible for unseen w's

e Can include all extreme points of joint dist of w, or if h(x,w') is
(almost surely) feasible for any x—(relatively) complete recourse

e Xy might be far from x*, especially if N small relative to dim of x

e A motivation for distributionally robust optimization—see later

21



Let’s break for five minutes.
Then talk about how to solve these problems



Sample Average Approximation:
Algorithmics




First Strategy: Solve the Deterministic Equivalent

We can view the sample-average approximation as one big linear
optimization problem and throw it to Mosek or Gurobi
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First Strategy: Solve the Deterministic Equivalent

We can view the sample-average approximation as one big linear
optimization problem and throw it to Mosek or Gurobi

e Make a copy of y' for each scenario w' and solve

. IR :
)?Earg)[réﬁgn CTX+E;h(x,w’)
=
st. Ax<b

e Pros: very quick to code, if it works, then we are done

e Good first thing to try

e Cons: this optimization problem might be big. Really big

e Example: electricity market with random demand at 20 nodes that
can independently be “low” or “high” That's 229 = 1048576 copies
of y, which is intractable for a real market

e Still, you can sometimes do well by subsampling the scenarios

(Shapiro and Homem-de-Mello, 1998) ’



Second Strategy: Decompose the Problem

What optimizers usually do: use a decomposition scheme called Benders
decomposition (sometimes called the “L-shaped” method)
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Second Strategy: Decompose the Problem

What optimizers usually do: use a decomposition scheme called Benders
decomposition (sometimes called the “L-shaped” method)

Consider

Let @ > 1357 | h(x,w’) be an epigraph variable
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Second Strategy: Decompose the Problem

mn ¢'x+0
x€R",6

s.t. Ax <b.
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Second Strategy: Decompose the Problem

mn ¢'x+0
x€R",6

s.t. Ax <b.

(Sketch) We iteratively

e Solve this “master” problem to find an optimal x
e Evaluate 1/nY"" | h(x,w’) and add inequalities which model
e 0> 15" h(x,w')
e For x to be feasible, there is a feasible y(w') in each scenario w'

until we converge. We never model y(w'), so we replaced one intractable
problem with a sequence of (possibly many) tractable ones

Remark: About to go through how this works in gory detail. However, |
find the best way to understand this method is to code it for yourself.
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Benders Decomposition

Suppose we solve

mn ¢'x+0
x€R",6

st. Ax <b.

and obtain some solution x. Two cases:
e There is some scenario w' for which no y(w) can make the scenario

feasible — we need to tell the master problem that this x is
infeasible, via a feasibility cut
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Benders Decomposition

Suppose we solve

mn ¢'x+0
x€R",6

st. Ax <b.

and obtain some solution x. Two cases:

e There is some scenario w' for which no y(w) can make the scenario
feasible — we need to tell the master problem that this x is
infeasible, via a feasibility cut

e Every scenario w' is feasible — we need to tell the master problem
how much x costs via an optimality cut
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Benders Decomposition: Feasibility Cut

Suppose we solve
min c¢'x+06
xeR",0

st. Ax <b.

and obtain some solution x such that in scenario i no y(w) can make the
scenario feasible.
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st. Ax <b.

and obtain some solution x such that in scenario i no y(w) can make the
scenario feasible. Then, the dual problem in this scenario is unbounded
(why?), so there is some p(w') such that

(d(w) = D(w)x)" u(w) >0, F(w)" p(w) =0, u(w) < 0.
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Benders Decomposition: Feasibility Cut

Suppose we solve
min c¢'x+06
xeR",0

st. Ax <b.

and obtain some solution x such that in scenario i no y(w) can make the
scenario feasible. Then, the dual problem in this scenario is unbounded
(why?), so there is some p(w') such that

(d(w) = D(w)x)" u(w) >0, F(w)" p(w) =0, u(w) < 0.
Therefore, we fix u(w') and impose the feasibility cut
(d(w') = D(w')x) " pu(w’) <0,
in the master problem, where everything but x is data
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In This Case, The Master Problem Now Looks Like

min ¢ 'x+0
x€ER",0

s.t. Ax < b,
(d(w') = D(w')x) " p(w') < 0.
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Case Two: Each Scenario Was Feasible

0 usually underestimates 1/n " | h(x,w’)
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Case Two: Each Scenario Was Feasible

n

0 usually underestimates 1/n " | h(x,w’)
Need cut involving @, which tells master problem what x costs

By strong duality

n

37 hxw) = 1/n Y (d(w) — D(w )T (),

i=1

where p(w'), dual-optimal in scenario i, is data
By weak duality, for any x

1 a _ i 1 i iz i
23 h(xw) 2 = S (d() - D)) (),
i=1 i=1
where everything but X is data

Therefore, we add cut

0>~ 5 (d(w) ~ D(w)x) ()
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The Master Problem Might Now Look Like

min  c'x+6
xeR",0

s.t. Ax

29



Benders Decomposition, in 1000 words
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Benders Decomposition, in 1000 words
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Benders Decomposition, in 1000 words

/ \
/ \x)
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Sample Average Approximation: Code
You will write this yourself in the first
assignment :-)



Can we do Better? Ridge
Regression and Sample-Average
Approximation




Can we do Better Than the Sample-Average
Approximation?



Returning to Linear Regression

Statisticians don't solve problems like

1
in X8 - yl3
. =l

to pick 3, despite SAA’s properties. Why not?
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1
in = XB-yl3+R
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where R(-) is a regularization term, e.g., %H,@H% + A||B]|1 for
appropriately chosen A, v (elastic net method, Zou and Hastie 2005).
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Returning to Linear Regression

Statisticians don't solve problems like

1
in X8 - yl3
. =l

to pick 3, despite SAA’s properties. Why not?

Because n is finite; we want B to perform as well as possible on an
unseen observation (x;, y;), not just minimize training error.They solve

1
in = XB-yl3+R
in - ~IXB —yllz + R(A),

where R(-) is a regularization term, e.g., %H,@H% + A||B]|1 for
appropriately chosen A, v (elastic net method, Zou and Hastie 2005).

This usually performs better out-of-sample.
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How is This Related to SAA?

e In the 2000s, sample-average approximation was a very popular
method for optimizing under uncertainty
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How is This Related to SAA?

e In the 2000s, sample-average approximation was a very popular
method for optimizing under uncertainty

e In the early 2010s, the community became more aware of the danger
of overfitting, and in particular that SAA tends to be overly
optimistic w.r.t. its out-of-sample performance. Since then, variants
of SAA that account for overfitting with better finite-sample
guarantees have become popular

e We still teach SAA, because you need to understand SAA first

e Variants intimately related to distributional robustness (see Lecture
8)

e For more on this, see: Bertsimas, Dimitris, Vishal Gupta, and

Nathan Kallus. " Robust sample average approximation.”
Mathematical Programming 171.1 (2018): 217-282.
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Extension: Benders Decomposition for Facility Location

See slides by Fischetti (2017)
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Suggested Readings



Suggested Readings to Accompany Today’s Lecture

A friendly reminder:
“To get as much out of this class as possible, we suggest that you

spend at least as much time on reading the papers and textbooks
referenced in the lectures/reviewing the lectures as you spend in
class.” — The syllabus

Recommended reading:

e Shapiro, Dentcheva, Ruszczynski Lectures on Stochastic
Programming: Modeling and Theory (2013), Chapters 1.1 and 2.

Optional further reading:

e Recht Lecture 1. In C5294 The Mathematics of Data Science
lecture notes, UC Berkeley (2013).

e Kim, Pasupathy, Henderson A Guide to Sample-Average
Approximation. In: Handbook of simulation optimization (2015).
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Thank you, and see you next week!
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