Decision Making Under Uncertainty: Lecture 2—Sample Average Approximation

Lecture 2 Ryan Cory-Wright Spring 2026

Some Housekeeping

 Reminder: Please name the paper you are presenting for critical paper review and the week you are presenting in (by email to me) by Friday.

Some Housekeeping

- Reminder: Please name the paper you are presenting for critical paper review and the week you are presenting in (by email to me) by Friday.
- HW1 is now out, due on 2 Feb (see Insendi)—brief discussion of HW questions.
- I'll set aside some time at the end of the Monday Week 4 lecture, in case you have questions on the homework then.

$$\begin{aligned} \min_{x_1, x_2} & x_1 + x_2 \\ \text{s.t.} & \omega_1 x_1 + x_2 \geq 7 \\ & \omega_2 x_1 + x_2 \geq 4 \\ & x_1, x_2 \geq 0 \end{aligned}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$

$$\begin{aligned} \min_{x_1, x_2} & x_1 + x_2 \\ \text{s.t.} & \omega_1 x_1 + x_2 \ge 7 \\ & \omega_2 x_1 + x_2 \ge 4 \\ & x_1, x_2 \ge 0 \end{aligned}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$

This problem is not well-enough defined to solve

$$\begin{aligned} \min_{x_1, x_2} & x_1 + x_2 \\ \text{s.t.} & \omega_1 x_1 + x_2 \ge 7 \\ & \omega_2 x_1 + x_2 \ge 4 \\ & x_1, x_2 \ge 0 \end{aligned}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$

This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other.

$$\begin{aligned} \min_{x_1, x_2} & x_1 + x_2 \\ \text{s.t.} & \omega_1 x_1 + x_2 \ge 7 \\ & \omega_2 x_1 + x_2 \ge 4 \\ & x_1, x_2 \ge 0 \end{aligned}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are independent This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume independent

$$\label{eq:sigma} \begin{aligned} & \min_{x_1,x_2} & x_1 + x_2 \\ & \text{s.t.} & \omega_1 x_1 + x_2 \geq 7, \ \omega_2 x_1 + x_2 \geq 4, \ x_1,x_2 \geq 0 \end{aligned}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are independent

This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume independent

Second, we don't know how x_1, x_2 depend on ω :

$$\label{eq:sum_eq} \begin{aligned} & \min_{x_1,x_2} & x_1 + x_2 \\ & \text{s.t.} & \omega_1 x_1 + x_2 \geq 7, \ \omega_2 x_1 + x_2 \geq 4, \ x_1,x_2 \geq 0 \end{aligned}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are independent

This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume independent

Second, we don't know how x_1, x_2 depend on ω :

• Do we pick x, then Nature picks ω , or vice versa?

$$\label{eq:sum_eq} \begin{aligned} & \min_{x_1,x_2} & x_1 + x_2 \\ & \text{s.t.} & \omega_1 x_1 + x_2 \geq 7, \ \omega_2 x_1 + x_2 \geq 4, \ x_1,x_2 \geq 0 \end{aligned}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are independent

This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume independent

Second, we don't know how x_1, x_2 depend on ω :

- Do we pick x, then Nature picks ω , or vice versa?
- First case: want to be feasible w.p.1., so minimizing $x_1 + x_2$ with $x_1 + x_2 \ge 7$, giving optimal solution of (0,7) with cost 7

$$\label{eq:sigma} \begin{aligned} & \min_{x_1,x_2} & x_1 + x_2 \\ & \text{s.t.} & \omega_1 x_1 + x_2 \geq 7, \ \omega_2 x_1 + x_2 \geq 4, \ x_1,x_2 \geq 0 \end{aligned}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are independent This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume independent

Second, we don't know how x_1, x_2 depend on ω :

- Do we pick x, then Nature picks ω , or vice versa?
- First case: want to be feasible w.p.1., so minimizing $x_1 + x_2$ with $x_1 + x_2 \ge 7$, giving optimal solution of (0,7) with cost 7
- Second case: more complicated casewise analysis (exercise)

$$\label{eq:sigma} \begin{aligned} & \min_{x_1,x_2} & x_1 + x_2 \\ & \text{s.t.} & \omega_1 x_1 + x_2 \geq 7, \ \omega_2 x_1 + x_2 \geq 4, \ x_1,x_2 \geq 0 \end{aligned}$$

Where $\omega_1 \sim \mathcal{U}[1,4], \omega_2 \sim \mathcal{U}[1/3,1]$ are independent

This problem is not well-enough defined to solve

First, we don't know how ω_1 , ω_2 depend on each other. Assume independent

Second, we don't know how x_1, x_2 depend on ω :

- Do we pick x, then Nature picks ω , or vice versa?
- First case: want to be feasible w.p.1., so minimizing $x_1 + x_2$ with $x_1 + x_2 \ge 7$, giving optimal solution of (0,7) with cost 7
- Second case: more complicated casewise analysis (exercise)

Conclusion: Terminology matters; should define everything carefully!

Outline of Lecture 2

Motivation: Ordinary Least Squares Regression

Sample Average Approximation: Theory

Newsvendor: A Special Case That We Can Solve

The General Problem

Sample Average Approximation: Algorithmics

Can we do Better? Ridge Regression and Sample-Average Approximation Suggested Readings

Motivation: Ordinary Least

Squares Regression

Linear regression: n i.i.d. observations of p-dimensional input vector \mathbf{x} and output y, $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$. We believe input-output follows model $y = \mathbf{x}^\top \boldsymbol{\beta}_{\text{true}} + \epsilon$, where $\boldsymbol{\beta}_{\text{true}}$ fixed vector, ϵ i.i.d. zero-mean noise.

Linear regression: n i.i.d. observations of p-dimensional input vector \mathbf{x} and output y, $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$. We believe input-output follows model $y = \mathbf{x}^\top \boldsymbol{\beta}_{\text{true}} + \epsilon$, where $\boldsymbol{\beta}_{\text{true}}$ fixed vector, ϵ i.i.d. zero-mean noise.

How to estimate β ?

Linear regression: n i.i.d. observations of p-dimensional input vector \mathbf{x} and output y, $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$. We believe input-output follows model $y = \mathbf{x}^\top \boldsymbol{\beta}_{\mathsf{true}} + \epsilon$, where $\boldsymbol{\beta}_{\mathsf{true}}$ fixed vector, ϵ i.i.d. zero-mean noise.

How to estimate β ? Typical answer: minimize OLS error

$$\hat{eta} \in rg \min_{oldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^n (y_i - oldsymbol{x}_i^ op oldsymbol{eta})^2$$

Linear regression: n i.i.d. observations of p-dimensional input vector \mathbf{x} and output y, $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$. We believe input-output follows model $y = \mathbf{x}^\top \boldsymbol{\beta}_{\text{true}} + \epsilon$, where $\boldsymbol{\beta}_{\text{true}}$ fixed vector, ϵ i.i.d. zero-mean noise.

How to estimate β ? Typical answer: minimize OLS error

$$\hat{eta} \in rg \min_{oldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^n (y_i - oldsymbol{x}_i^ op oldsymbol{eta})^2$$

After some calculus

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{y},$$

where \mathbf{A}^{\dagger} denotes pseudoinverse of \mathbf{A} .

Linear regression: n i.i.d. observations of p-dimensional input vector \mathbf{x} and output y, $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$. We believe input-output follows model $y = \mathbf{x}^\top \boldsymbol{\beta}_{\text{true}} + \epsilon$, where $\boldsymbol{\beta}_{\text{true}}$ fixed vector, ϵ i.i.d. zero-mean noise.

How to estimate β ? Typical answer: minimize OLS error

$$\hat{eta} \in rg \min_{oldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^n (y_i - oldsymbol{x}_i^ op oldsymbol{eta})^2$$

After some calculus

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{y},$$

where \mathbf{A}^{\dagger} denotes pseudoinverse of \mathbf{A} . Assume p fixed, n > p

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{y} \underbrace{\qquad}_{\text{substitute}} \underbrace{\boldsymbol{\beta}_{\text{true}}}_{\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta}_{\text{true}} + \boldsymbol{\epsilon}} \boldsymbol{\beta}_{\text{true}} + (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{\epsilon}$$

Aside: Matrix Pseudoinverses

If \pmb{X} a matrix with singular value decomposition $\pmb{X} = \pmb{U} \pmb{\Sigma} \pmb{V}^{\top}$ Then $\pmb{X}^{\dagger} = \pmb{V} \pmb{\Sigma}^{\dagger} \pmb{U}^{\top}$ where $\pmb{\Sigma}^{\dagger}$ is a diagonal matrix where we invert all non-zero diagonal entries, keep zeroes as zeroes.

For a symmetric matrix like $\mathbf{X}^{\top}\mathbf{X}$, can define

$$(\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger} := \lim_{\lambda \to 0} (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \mathbb{I})^{-1}\boldsymbol{X}^{\top}.$$

See the book "Matrix Analysis" by Horn and Johnson.

Reminder: Almost Sure Convergence

Almost Sure Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\{X_i\}_{i \in \mathbb{N}}, X$ be random variables. Suppose that $A \in \mathcal{F}$ is a measurable set such that $\mathbb{P}(A) = 1$ and for all $\omega \in \mathcal{A}$ we have

$$\boldsymbol{X}_{i}(\omega) \rightarrow \boldsymbol{X}(\omega).$$

Then, we say that $X_i \stackrel{a.s.}{\to} X$.

Reminder: Continuous Mapping Theorem

Continuous Mapping Theorem

Let X_i, X be random variables. Suppose that $X_i \stackrel{a.s.}{\to} X$ and f is continuous almost everywhere. Then

$$f(\boldsymbol{X}_i) \stackrel{a.s.}{\rightarrow} f(\boldsymbol{X})$$

Asymptotics of Linear Regression

Consider our rearranged equation:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{y} = \boldsymbol{\beta}_{\mathsf{true}} + (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{\epsilon}$$

As $n \to \infty$, what happens to $\hat{\beta}$?

Asymptotics of Linear Regression

Consider our rearranged equation:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{y} = \boldsymbol{\beta}_{\mathsf{true}} + (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{\epsilon}$$

As $n \to \infty$, what happens to $\hat{\beta}$?

- SLLN $\frac{1}{n}XX^{\top} \stackrel{a.s.}{\to} \mathbb{E}[x_i x_i^{\top}]$
- SLLN $\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{\epsilon} \overset{a.s.}{\rightarrow} \boldsymbol{0}$

Asymptotics of Linear Regression

Consider our rearranged equation:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{y} = \boldsymbol{\beta}_{\mathsf{true}} + (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{\epsilon}$$

As $n \to \infty$, what happens to $\hat{\beta}$?

- SLLN $\frac{1}{n}XX^{\top} \stackrel{a.s.}{\rightarrow} \mathbb{E}[x_ix_i^{\top}]$
- SLLN $\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{\epsilon} \overset{a.s.}{\rightarrow} \boldsymbol{0}$
- Therefore $\hat{\beta} \overset{a.s.}{\to} \beta_{\mathsf{true}}$ (under some mild conditions on span of $\mathbb{E}[\mathbf{x}_i \mathbf{x}_i^{\top}]$ etc.)

• We solved our first stochastic optimization problem!

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i) , estimate model β by (1) writing down stochastic optimization problem

$$\hat{\beta} = \arg\min_{\boldsymbol{\beta}} \mathbb{E}_{\mathbf{x},y}[(y - \mathbf{x}^{\top}\boldsymbol{\beta})^2]$$

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i) , estimate model β by (1) writing down stochastic optimization problem

$$\hat{\beta} = \arg\min_{\boldsymbol{\beta}} \mathbb{E}_{\mathbf{x},y}[(y - \mathbf{x}^{\top}\boldsymbol{\beta})^2]$$

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \frac{1}{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$$

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i) , estimate model β by (1) writing down stochastic optimization problem

$$\hat{\beta} = \arg\min_{\boldsymbol{\beta}} \mathbb{E}_{\mathbf{x},y}[(y - \mathbf{x}^{\top}\boldsymbol{\beta})^2]$$

find estimator with least variance, (2) treating each obs. as equally likely, replacing expectation with sample-average approximation

$$\min_{\beta} \sum_{i=1}^{n} \frac{1}{n} (y_i - \boldsymbol{x}_i^{\top} \beta)^2$$

ullet We showed \hat{eta} almost surely converges to $eta_{
m true}$ as $n o \infty$

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i) , estimate model β by (1) writing down stochastic optimization problem

$$\hat{\beta} = \arg\min_{\boldsymbol{\beta}} \mathbb{E}_{\mathbf{x},y}[(y - \mathbf{x}^{\top}\boldsymbol{\beta})^2]$$

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \frac{1}{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$$

- We showed $\hat{\beta}$ almost surely converges to β_{true} as $n \to \infty$
- So supervised learning is special case of stochastic optimization!

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i) , estimate model β by (1) writing down stochastic optimization problem

$$\hat{\beta} = \arg\min_{\boldsymbol{\beta}} \mathbb{E}_{\mathbf{x},y}[(y - \mathbf{x}^{\top}\boldsymbol{\beta})^2]$$

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \frac{1}{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$$

- ullet We showed \hat{eta} almost surely converges to $eta_{
 m true}$ as $n o \infty$
- So supervised learning is special case of stochastic optimization!
- This would take a ML class 3-4 lectures; let's take a breath here!

- We solved our first stochastic optimization problem!
- Given sample of n data points (x_i, y_i) , estimate model β by (1) writing down stochastic optimization problem

$$\hat{\beta} = \arg\min_{\boldsymbol{\beta}} \mathbb{E}_{\mathbf{x},y}[(y - \mathbf{x}^{\top}\boldsymbol{\beta})^2]$$

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \frac{1}{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$$

- ullet We showed \hat{eta} almost surely converges to $eta_{
 m true}$ as $n o \infty$
- So supervised learning is special case of stochastic optimization!
- This would take a ML class 3-4 lectures; let's take a breath here!
- Plan for lecture: Show holds more generally, how to solve SAA

Sample Average Approximation:

Theory

Let's warm up with a special case

Hot off the Press: The Newsvendor Problem

• A newsvendor (newspaper salesperson) needs to decide how many newspapers x to buy to maximize their profit

Hot off the Press: The Newsvendor Problem

- A newsvendor (newspaper salesperson) needs to decide how many newspapers *x* to buy to maximize their profit
- She doesn't know how many newspapers there are demand for, D_{ω} in scenario ω . But she does know the probability distribution of D_{ω}

- A newsvendor (newspaper salesperson) needs to decide how many newspapers x to buy to maximize their profit
- She doesn't know how many newspapers there are demand for, D_{ω} in scenario ω . But she does know the probability distribution of D_{ω}
- Each newspaper costs c, can be sold for q if there is demand
- Unsold newspapers get thrown in the recycling bin
- How to optimally set x?

$$\max_{x\geq 0} \mathbb{E}_{\omega}[\min(D_{\omega},x)q - cx]$$

$$\max_{x\geq 0} \mathbb{E}_{\omega}[\min(D_{\omega},x)q - cx]$$

Two cases: $x>D_{\omega}$ or $x\leq D_{\omega}$. Rewrite using conditional expectations

$$\max_{x\geq 0} \mathbb{E}_{\omega}[\min(D_{\omega},x)q-cx]$$

Two cases: $x > D_{\omega}$ or $x \leq D_{\omega}$. Rewrite using conditional expectations

$$\max_{x \geq 0} \mathbb{E}_{\omega}[D_{\omega}q - cx|x \leq D_{\omega}]\mathbb{P}(x \leq D_{\omega}) + \mathbb{E}_{\omega}[qx - cx|x > D_{\omega}]\mathbb{P}(x > D_{\omega})$$

$$\max_{x\geq 0}\mathbb{E}_{\omega}[\min(D_{\omega},x)q-cx]$$

Two cases: $x > D_{\omega}$ or $x \leq D_{\omega}$. Rewrite using conditional expectations

$$\max_{x\geq 0} \mathbb{E}_{\omega}[D_{\omega}q - cx|x \leq D_{\omega}]\mathbb{P}(x \leq D_{\omega}) + \mathbb{E}_{\omega}[qx - cx|x > D_{\omega}]\mathbb{P}(x > D_{\omega})$$

This is convex in x, so differentiate with respect to x, require that 0 in subgradient.

$$\max_{x\geq 0}\mathbb{E}_{\omega}[\min(D_{\omega},x)q-cx]$$

Two cases: $x > D_{\omega}$ or $x \leq D_{\omega}$. Rewrite using conditional expectations

$$\max_{x\geq 0} \mathbb{E}_{\omega}[D_{\omega}q - cx|x \leq D_{\omega}]\mathbb{P}(x \leq D_{\omega}) + \mathbb{E}_{\omega}[qx - cx|x > D_{\omega}]\mathbb{P}(x > D_{\omega})$$

This is convex in x, so differentiate with respect to x, require that 0 in subgradient.

Eventually get

$$x^* \in F_{D_\omega}^{-1} \left(\frac{q - c}{q} \right)$$

$$\max_{x>0} \mathbb{E}_{\omega}[\min(D_{\omega}, x)q - cx]$$

Two cases: $x > D_{\omega}$ or $x \leq D_{\omega}$. Rewrite using conditional expectations

$$\max_{x>0} \mathbb{E}_{\omega}[D_{\omega}q - cx|x \leq D_{\omega}]\mathbb{P}(x \leq D_{\omega}) + \mathbb{E}_{\omega}[qx - cx|x > D_{\omega}]\mathbb{P}(x > D_{\omega})$$

This is convex in x, so differentiate with respect to x, require that 0 in subgradient.

Eventually get

$$x^* \in F_{D_\omega}^{-1}\left(\frac{q-c}{q}\right)$$

That is, a $\frac{(q-c)}{q}$ th quantile of D_{ω}

Insight: setting x equal to $\mathbb{E}[D_{\omega}]$ could be bad, especially if $q\gg c$

The General Problem

Consider stochastic optimization problem:

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} & \mathbf{c}^{ op} \mathbf{x} + \mathbb{E}_{\omega}[h(\mathbf{x}, \omega)] \ & ext{s.t.} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \end{aligned}$$

Consider stochastic optimization problem:

$$\min_{oldsymbol{x} \in \mathbb{R}^n} \quad oldsymbol{c}^ op oldsymbol{x} + \mathbb{E}_{\omega}[h(oldsymbol{x}, oldsymbol{\omega})]$$
s.t. $oldsymbol{A} oldsymbol{x} < oldsymbol{b}$

$$egin{aligned} h(\mathbf{x}, \omega) &:= & \min_{\mathbf{y}(\omega)} \mathbf{q}(\omega)^{\top} \mathbf{y}(\omega) \ & ext{s.t.} & D(\omega) \mathbf{x} + \mathbf{F}(\omega) \mathbf{y}(\omega) \leq \mathbf{d}(\omega) \end{aligned}$$

Consider stochastic optimization problem:

$$\min_{oldsymbol{x} \in \mathbb{R}^n} \quad oldsymbol{c}^ op oldsymbol{x} + \mathbb{E}_\omega[h(oldsymbol{x}, oldsymbol{\omega})]$$
s.t. $oldsymbol{A} oldsymbol{x} < oldsymbol{b}$

where

$$h(x, \omega) := \min_{\mathbf{y}(\omega)} \mathbf{q}(\omega)^{\top} \mathbf{y}(\omega)$$

s.t. $\mathbf{D}(\omega) \mathbf{x} + \mathbf{F}(\omega) \mathbf{y}(\omega) \le \mathbf{d}(\omega)$

ullet x are our first-stage (or here-and-now) decision variables, which we select before nature picks ω

Consider stochastic optimization problem:

$$\min_{oldsymbol{x} \in \mathbb{R}^n} \quad oldsymbol{c}^ op oldsymbol{x} + \mathbb{E}_\omega[h(oldsymbol{x}, oldsymbol{\omega})]$$
s.t. $oldsymbol{A} oldsymbol{x} < oldsymbol{b}$

$$h(\mathbf{x}, \boldsymbol{\omega}) := \min_{\mathbf{y}(\boldsymbol{\omega})} \mathbf{q}(\boldsymbol{\omega})^{\top} \mathbf{y}(\boldsymbol{\omega})$$

s.t. $\mathbf{D}(\boldsymbol{\omega}) \mathbf{x} + \mathbf{F}(\boldsymbol{\omega}) \mathbf{y}(\boldsymbol{\omega}) \leq \mathbf{d}(\boldsymbol{\omega})$

- ullet x are our first-stage (or here-and-now) decision variables, which we select before nature picks ω
- $m{\omega}$ are the random variables selected by nature, according to their joint probability distribution (assumed to be known)

Consider stochastic optimization problem:

$$\min_{oldsymbol{x} \in \mathbb{R}^n} \quad oldsymbol{c}^ op oldsymbol{x} + \mathbb{E}_\omega[h(oldsymbol{x}, oldsymbol{\omega})]$$
s.t. $oldsymbol{A} oldsymbol{x} < oldsymbol{b}$

$$h(\mathbf{x}, \boldsymbol{\omega}) := \min_{\mathbf{y}(\boldsymbol{\omega})} \mathbf{q}(\boldsymbol{\omega})^{\top} \mathbf{y}(\boldsymbol{\omega})$$

s.t. $\mathbf{D}(\boldsymbol{\omega}) \mathbf{x} + \mathbf{F}(\boldsymbol{\omega}) \mathbf{y}(\boldsymbol{\omega}) \leq \mathbf{d}(\boldsymbol{\omega})$

- ullet x are our first-stage (or here-and-now) decision variables, which we select before nature picks ω
- ω are the random variables selected by nature, according to their joint probability distribution (assumed to be known)
- $y(\omega)$ are our second-stage (or wait-and-see, or recourse) decision variables, that we are allowed to pick after nature picks ω

Consider stochastic optimization problem:

$$\min_{oldsymbol{x} \in \mathbb{R}^n} \quad oldsymbol{c}^ op oldsymbol{x} + \mathbb{E}_\omega[h(oldsymbol{x}, oldsymbol{\omega})]$$
s.t. $oldsymbol{A} oldsymbol{x} \le oldsymbol{b}$

$$h(\mathbf{x}, \boldsymbol{\omega}) := \min_{\mathbf{y}(\boldsymbol{\omega})} \mathbf{q}(\boldsymbol{\omega})^{\top} \mathbf{y}(\boldsymbol{\omega})$$

s.t. $\mathbf{D}(\boldsymbol{\omega}) \mathbf{x} + \mathbf{F}(\boldsymbol{\omega}) \mathbf{y}(\boldsymbol{\omega}) \leq \mathbf{d}(\boldsymbol{\omega})$

- ullet x are our first-stage (or here-and-now) decision variables, which we select before nature picks ω
- ω are the random variables selected by nature, according to their joint probability distribution (assumed to be known)
- $y(\omega)$ are our second-stage (or wait-and-see, or recourse) decision variables, that we are allowed to pick after nature picks ω
- A linear optimization problem with random parameters

ullet Complexity Theory: Solving this problem is #P-hard

- Complexity Theory: Solving this problem is #P-hard
 - See Hanasusanto et al. (Math. Prog., 2016) for a proof

- Complexity Theory: Solving this problem is #P-hard
 - See Hanasusanto et al. (Math. Prog., 2016) for a proof
 - Who knows what this means?

- Complexity Theory: Solving this problem is #P-hard
 - See Hanasusanto et al. (Math. Prog., 2016) for a proof
 - Who knows what this means?
 - As hard as counting number of solutions to NP-hard problem

- Complexity Theory: Solving this problem is #P-hard
 - See Hanasusanto et al. (Math. Prog., 2016) for a proof
 - Who knows what this means?
 - As hard as counting number of solutions to NP-hard problem
 - I once heard someone say "Judging a problem by its complexity is like judging someone by the worst thing they have ever done"
 - —In and of itself, #P-hard doesn't mean intractable

- Complexity Theory: Solving this problem is #P-hard
 - See Hanasusanto et al. (Math. Prog., 2016) for a proof
 - Who knows what this means?
 - As hard as counting number of solutions to NP-hard problem
 - I once heard someone say "Judging a problem by its complexity is like judging someone by the worst thing they have ever done"
 - —In and of itself, #P-hard doesn't mean intractable
- ullet Structure of Optimal Solutions: In general, ${\it {f y}}$ a function of ω

Let's play same game as in the linear regression case!

Let's play same game as in the linear regression case! Replace (unknown) expectation over ω with expectation over empirical distribution ω_i . With n observations of ω , or n "scenarios", solve:

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + rac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

Let's play same game as in the linear regression case! Replace (unknown) expectation over ω with expectation over empirical distribution ω_i . With n observations of ω , or n "scenarios", solve:

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + rac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

Why is this a good thing to do?

Let's play same game as in the linear regression case! Replace (unknown) expectation over ω with expectation over empirical distribution ω_i . With n observations of ω , or n "scenarios", solve:

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + rac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

Why is this a good thing to do? Justifications:

ullet Joint distribution over ω only exists in our imagination, while empirical distribution constructed from data, which is real

Let's play same game as in the linear regression case! Replace (unknown) expectation over ω with expectation over empirical distribution ω_i . With n observations of ω , or n "scenarios", solve:

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + rac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
 s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

Why is this a good thing to do? Justifications:

- ullet Joint distribution over ω only exists in our imagination, while empirical distribution constructed from data, which is real
- As $n \to \infty$, for i.i.d. ω^i , $\hat{\mathbf{x}}$ almost surely converges to a minimizer of our two-stage problem under true joint distribution of ω

Let's play same game as in the linear regression case! Replace (unknown) expectation over ω with expectation over empirical distribution ω_i . With n observations of ω , or n "scenarios", solve:

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + rac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
 s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

Why is this a good thing to do? Justifications:

- Joint distribution over ω only exists in our imagination, while empirical distribution constructed from data, which is real
- As $n \to \infty$, for i.i.d. ω^i , $\hat{\mathbf{x}}$ almost surely converges to a minimizer of our two-stage problem under true joint distribution of ω
- Who can tell me why we use "arg min" and "a minimizer" here?

Almost Sure Convergence Proof (Sketch)

• Define a sample-average function, redefine expected value

$$\hat{g}_{\mathcal{N}}(\mathbf{x}) := \min_{\mathbf{y}(\omega^i)} \mathbf{c}^{\top} \mathbf{x} + \frac{1}{\mathcal{N}} \sum_{i=1}^n h(\mathbf{x}, \omega^i),$$
 $g(\mathbf{x}) := \min_{\mathbf{y}(\omega)} \mathbb{E}_{\omega}[\mathbf{c}^{\top} \mathbf{x} + \frac{1}{\mathcal{N}} \sum_{i=1}^n h(\mathbf{x}, \omega)]$

h is the optimal value of a minimization problem. Why is it convex?

h is the optimal value of a minimization problem. Why is it convex?

$$h(\mathbf{x}, \boldsymbol{\omega}) := \min_{\mathbf{y}(\boldsymbol{\omega})} \mathbf{q}(\boldsymbol{\omega})^{\top} \mathbf{y}(\boldsymbol{\omega}) \text{ s.t. } \mathbf{D}(\boldsymbol{\omega}) \mathbf{x} + \mathbf{F}(\boldsymbol{\omega}) \mathbf{y}(\boldsymbol{\omega}) \leq \mathbf{d}(\boldsymbol{\omega})$$

h is the optimal value of a minimization problem. Why is it convex?

$$h(\mathbf{x}, \boldsymbol{\omega}) := \min_{\mathbf{y}(\boldsymbol{\omega})} \mathbf{q}(\boldsymbol{\omega})^{\top} \mathbf{y}(\boldsymbol{\omega}) \text{ s.t. } \mathbf{D}(\boldsymbol{\omega}) \mathbf{x} + \mathbf{F}(\boldsymbol{\omega}) \mathbf{y}(\boldsymbol{\omega}) \leq \mathbf{d}(\boldsymbol{\omega})$$

Duality!

$$h(\mathbf{x}, \boldsymbol{\omega}) = \max_{\boldsymbol{\mu}(\omega)} \ (\boldsymbol{d}(\boldsymbol{\omega}) - \boldsymbol{D}(\omega)\mathbf{x})^{\top} \boldsymbol{\mu}(\omega) \text{ s.t. } \boldsymbol{F}(\omega)^{\top} \boldsymbol{\mu}(\omega) = \boldsymbol{q}(\boldsymbol{\omega}), \boldsymbol{\mu}(\omega) \leq \mathbf{0}$$

h is the optimal value of a minimization problem. Why is it convex?

$$h(\mathbf{x}, \omega) := \min_{\mathbf{y}(\omega)} \mathbf{q}(\omega)^{\top} \mathbf{y}(\omega) \text{ s.t. } \mathbf{D}(\omega) \mathbf{x} + \mathbf{F}(\omega) \mathbf{y}(\omega) \leq \mathbf{d}(\omega)$$

Duality!

$$h(oldsymbol{x},oldsymbol{\omega}) = \max_{oldsymbol{\mu}(oldsymbol{\omega})} \ \ (oldsymbol{d}(oldsymbol{\omega}) - oldsymbol{D}(oldsymbol{\omega})oldsymbol{x})^{ op} oldsymbol{\mu}(oldsymbol{\omega}) ext{ s.t. } oldsymbol{F}(oldsymbol{\omega})^{ op} oldsymbol{\mu}(oldsymbol{\omega}) = oldsymbol{q}(oldsymbol{\omega}), oldsymbol{\mu}(oldsymbol{\omega}) \leq oldsymbol{0}$$

 $h(x,\omega)$ is the pointwise maximum of functions linear in x, hence convex

h is the optimal value of a minimization problem. Why is it convex?

$$h(\mathbf{x}, \boldsymbol{\omega}) := \min_{\mathbf{y}(\boldsymbol{\omega})} \mathbf{q}(\boldsymbol{\omega})^{\top} \mathbf{y}(\boldsymbol{\omega}) \text{ s.t. } \mathbf{D}(\boldsymbol{\omega}) \mathbf{x} + \mathbf{F}(\boldsymbol{\omega}) \mathbf{y}(\boldsymbol{\omega}) \leq \mathbf{d}(\boldsymbol{\omega})$$

Duality!

$$h(oldsymbol{x},oldsymbol{\omega}) = \max_{oldsymbol{\mu}(oldsymbol{\omega})} \ \ (oldsymbol{d}(oldsymbol{\omega}) - oldsymbol{D}(oldsymbol{\omega})oldsymbol{x})^{ op} oldsymbol{\mu}(oldsymbol{\omega}) ext{ s.t. } oldsymbol{F}(oldsymbol{\omega})^{ op} oldsymbol{\mu}(oldsymbol{\omega}) = oldsymbol{q}(oldsymbol{\omega}), oldsymbol{\mu}(oldsymbol{\omega}) \leq oldsymbol{0}$$

 $h(x,\omega)$ is the pointwise maximum of functions linear in x, hence convex Pointwise maximum also reveals h is continuous on its domain

Almost Sure Convergence Proof (Sketch)

• Define a sample-average function, redefine expected value

$$\hat{g}_N(\mathbf{x}) := \mathbf{c}^{\top} \mathbf{x} + \frac{1}{N} \sum_{i=1}^N h(\mathbf{x}, \omega^i),$$

 $g(\mathbf{x}) := \mathbf{c}^{\top} \mathbf{x} + \mathbb{E}_{\omega}[h(\mathbf{x}, \omega)]$

• By SLLN, continuity of $g_N, g: g_N(x) \stackrel{a.s.}{\to} g(x) \ \forall x: Ax \leq b$

 $^{^{1}}$ See Corollary 3 of "Monte Carlo Sampling Methods" by Shapiro (2003) for details.

Almost Sure Convergence Proof (Sketch)

• Define a sample-average function, redefine expected value

$$\hat{g}_N(\mathbf{x}) := \mathbf{c}^{\top} \mathbf{x} + \frac{1}{N} \sum_{i=1}^N h(\mathbf{x}, \omega^i),$$

 $g(\mathbf{x}) := \mathbf{c}^{\top} \mathbf{x} + \mathbb{E}_{\omega}[h(\mathbf{x}, \omega)]$

- By SLLN, continuity of $g_N, g: g_N(x) \stackrel{a.s.}{\to} g(x) \ \forall x: Ax \leq b$
- Therefore, (under mild conditions¹), $\inf_{x} g_{N}(x) \stackrel{a.s.}{\to} \inf_{x} g(x)$

¹See Corollary 3 of "Monte Carlo Sampling Methods" by Shapiro (2003) for details.

When Things go Wrong, as They Sometimes Will

Let's look at our sample-average approximation again:

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + rac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

What can go wrong?

When Things go Wrong, as They Sometimes Will

Let's look at our sample-average approximation again:

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + rac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

What can go wrong? In practice, we have a finite number of observations. That means:

When Things go Wrong, as They Sometimes Will

Let's look at our sample-average approximation again:

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + rac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

What can go wrong? In practice, we have a finite number of observations. That means:

ullet \hat{x} may not be feasible for unseen ω 's

When Things go Wrong, as They Sometimes Will

Let's look at our sample-average approximation again:

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + rac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

What can go wrong? In practice, we have a finite number of observations. That means:

- \hat{x} may not be feasible for unseen ω 's
 - Can include all extreme points of joint dist of ω , or if $h(x, \omega^i)$ is (almost surely) feasible for any x—(relatively) complete recourse

When Things go Wrong, as They Sometimes Will

Let's look at our sample-average approximation again:

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + rac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

What can go wrong? In practice, we have a finite number of observations. That means:

- \hat{x} may not be feasible for unseen ω 's
 - Can include all extreme points of joint dist of ω , or if $h(x, \omega^i)$ is (almost surely) feasible for any x—(relatively) complete recourse
- \hat{x}_N might be far from x^* , especially if N small relative to dim of x
 - A motivation for distributionally robust optimization—see later

Let's break for five minutes.

Then talk about how to solve these problems

Sample Average Approximation:

Algorithmics

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

• Make a copy of \mathbf{y}^i for each scenario ω^i and solve

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + \frac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

• Make a copy of \mathbf{y}^i for each scenario ω^i and solve

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + rac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

• Pros: very quick to code, if it works, then we are done

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + \frac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

- Pros: very quick to code, if it works, then we are done
- Good first thing to try

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + \frac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$
s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

- Pros: very quick to code, if it works, then we are done
- · Good first thing to try
- Cons: this optimization problem might be big. Really big

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + \frac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$

s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

- Pros: very quick to code, if it works, then we are done
- · Good first thing to try
- Cons: this optimization problem might be big. Really big
- Example: electricity market with random demand at 20 nodes that can independently be "low" or "high"

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + \frac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$

s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

- Pros: very quick to code, if it works, then we are done
- · Good first thing to try
- Cons: this optimization problem might be big. Really big
- Example: electricity market with random demand at 20 nodes that can independently be "low" or "high" That's $2^{20} = 1048576$ copies of y, which is intractable for a real market

We can view the sample-average approximation as one big linear optimization problem and throw it to Mosek or Gurobi

• Make a copy of \mathbf{y}^i for each scenario ω^i and solve

$$\hat{\pmb{x}} \in \arg\min_{\pmb{x} \in \mathbb{R}^n} \quad \pmb{c}^{ op} \pmb{x} + \frac{1}{n} \sum_{i=1}^n h(\pmb{x}, \pmb{\omega}^i)$$

s.t. $\pmb{A} \pmb{x} \leq \pmb{b}$

- Pros: very quick to code, if it works, then we are done
- Good first thing to try
- Cons: this optimization problem might be big. Really big
- Example: electricity market with random demand at 20 nodes that can independently be "low" or "high" That's $2^{20} = 1048576$ copies of y, which is intractable for a real market
- Still, you can sometimes do well by subsampling the scenarios (Shapiro and Homem-de-Mello, 1998)

What optimizers usually do: use a decomposition scheme called Benders decomposition (sometimes called the "L-shaped" method)

What optimizers usually do: use a decomposition scheme called Benders decomposition (sometimes called the "L-shaped" method)

Consider

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \mathbf{c}^\top \mathbf{x} + \frac{1}{n} \sum_{i=1}^n h(\mathbf{x}, \omega^i)$$
s.t. $\mathbf{A}\mathbf{x} < \mathbf{b}$

Let $\theta \geq \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{x}, \omega^{i})$ be an epigraph variable

$$\min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad \mathbf{c}^\top \mathbf{x} + \theta$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

$$\min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad \mathbf{c}^{\top} \mathbf{x} + \theta$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

(Sketch) We iteratively

ullet Solve this "master" problem to find an optimal ${m x}$

$$\min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad \mathbf{c}^{\top} \mathbf{x} + \theta$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

(Sketch) We iteratively

- ullet Solve this "master" problem to find an optimal ${m x}$
- Evaluate $1/n\sum_{i=1}^n h(\mathbf{x}, \boldsymbol{\omega}^i)$ and add inequalities which model
 - $\theta \geq \frac{1}{n} \sum_{i=1}^{n} h(x, \omega^{i})$
 - ullet For x to be feasible, there is a feasible $y(\omega^i)$ in each scenario ω^i

until we converge.

$$\min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad \mathbf{c}^{\top} \mathbf{x} + \theta$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

(Sketch) We iteratively

- ullet Solve this "master" problem to find an optimal ${m x}$
- Evaluate $1/n\sum_{i=1}^n h(\mathbf{x}, \boldsymbol{\omega}^i)$ and add inequalities which model
 - $\theta \geq \frac{1}{n} \sum_{i=1}^{n} h(x, \omega^{i})$
 - ullet For x to be feasible, there is a feasible $y(\omega^i)$ in each scenario ω^i

until we converge. We never model $y(\omega^i)$, so we replaced one intractable problem with a sequence of (possibly many) tractable ones

$$\min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad \mathbf{c}^\top \mathbf{x} + \theta$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

(Sketch) We iteratively

- ullet Solve this "master" problem to find an optimal ${m x}$
- Evaluate $1/n\sum_{i=1}^n h(\mathbf{x}, \boldsymbol{\omega}^i)$ and add inequalities which model
 - $\theta \geq \frac{1}{n} \sum_{i=1}^{n} h(x, \omega^{i})$
 - ullet For x to be feasible, there is a feasible $y(\omega^i)$ in each scenario ω^i

until we converge. We never model $y(\omega^i)$, so we replaced one intractable problem with a sequence of (possibly many) tractable ones

Remark: About to go through how this works in gory detail. However, I find the best way to understand this method is to code it for yourself.

Benders Decomposition

Suppose we solve

$$\min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad \mathbf{c}^\top \mathbf{x} + \theta$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

and obtain some solution x. Two cases:

• There is some scenario ω^i for which no $y(\omega)$ can make the scenario feasible \to we need to tell the master problem that this x is infeasible, via a feasibility cut

Benders Decomposition

Suppose we solve

$$\min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad \mathbf{c}^\top \mathbf{x} + \theta$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

and obtain some solution x. Two cases:

- There is some scenario ω^i for which no $y(\omega)$ can make the scenario feasible \to we need to tell the master problem that this x is infeasible, via a *feasibility cut*
- ullet Every scenario ω^i is feasible o we need to tell the master problem how much ${m x}$ costs via an *optimality cut*

Benders Decomposition: Feasibility Cut

Suppose we solve

$$\min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad \mathbf{c}^\top \mathbf{x} + \theta$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

and obtain some solution x such that in scenario i no $y(\omega)$ can make the scenario feasible.

Benders Decomposition: Feasibility Cut

Suppose we solve

$$\min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad \mathbf{c}^{\top} \mathbf{x} + \theta$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

and obtain some solution x such that in scenario i no $y(\omega)$ can make the scenario feasible. Then, the dual problem in this scenario is unbounded (why?), so there is some $\mu(\omega^i)$ such that

$$(\boldsymbol{d}(\boldsymbol{\omega}) - \boldsymbol{D}(\boldsymbol{\omega})\boldsymbol{x})^{\top}\boldsymbol{\mu}(\boldsymbol{\omega}) > 0, \ \boldsymbol{F}(\boldsymbol{\omega})^{\top}\boldsymbol{\mu}(\boldsymbol{\omega}) = \boldsymbol{0}, \boldsymbol{\mu}(\boldsymbol{\omega}) \leq \boldsymbol{0}.$$

Benders Decomposition: Feasibility Cut

Suppose we solve

$$\min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad \mathbf{c}^{\top} \mathbf{x} + \theta$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$.

and obtain some solution x such that in scenario i no $y(\omega)$ can make the scenario feasible. Then, the dual problem in this scenario is unbounded (why?), so there is some $\mu(\omega^i)$ such that

$$(\boldsymbol{d}(\boldsymbol{\omega}) - \boldsymbol{D}(\boldsymbol{\omega})\boldsymbol{x})^{\top}\boldsymbol{\mu}(\boldsymbol{\omega}) > 0, \ \boldsymbol{F}(\boldsymbol{\omega})^{\top}\boldsymbol{\mu}(\boldsymbol{\omega}) = \boldsymbol{0}, \boldsymbol{\mu}(\boldsymbol{\omega}) \leq \boldsymbol{0}.$$

Therefore, we fix $\mu(\omega^i)$ and impose the feasibility cut

$$(\boldsymbol{d}(\boldsymbol{\omega}^i) - \boldsymbol{D}(\boldsymbol{\omega}^i)\boldsymbol{x})^{\top}\boldsymbol{\mu}(\boldsymbol{\omega}^i) \leq 0,$$

in the master problem, where everything but x is data

In This Case, The Master Problem Now Looks Like

$$\label{eq:continuity} \begin{split} \min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad & \boldsymbol{c}^\top \mathbf{x} + \theta \\ \text{s.t.} \quad & \boldsymbol{A} \mathbf{x} \leq \boldsymbol{b}, \\ & (\boldsymbol{d}(\boldsymbol{\omega}^i) - \boldsymbol{D}(\boldsymbol{\omega}^i) \mathbf{x})^\top \boldsymbol{\mu}(\boldsymbol{\omega}^i) \leq 0. \end{split}$$

 θ usually underestimates $1/n\sum_{i=1}^n h(\mathbf{x}, \boldsymbol{\omega}^i)$

 θ usually underestimates $1/n\sum_{i=1}^n h({\textbf {x}},\omega^i)$

Need cut involving θ , which tells master problem what ${\it x}$ costs

 θ usually underestimates $1/n\sum_{i=1}^n h(\mathbf{x}, \boldsymbol{\omega}^i)$

Need cut involving θ , which tells master problem what x costs

By strong duality

$$\frac{1}{n}\sum_{i=1}^n h(\mathbf{x}, \boldsymbol{\omega}^i) = 1/n\sum_{i=1}^n (\boldsymbol{d}(\boldsymbol{\omega}^i) - \boldsymbol{D}(\boldsymbol{\omega}^i)\mathbf{x})^\top \boldsymbol{\mu}(\boldsymbol{\omega}^i),$$

where $\mu(\omega^i)$, dual-optimal in scenario i, is data

 θ usually underestimates $1/n\sum_{i=1}^n h(\mathbf{x}, \boldsymbol{\omega}^i)$

Need cut involving θ , which tells master problem what x costs

By strong duality

$$\frac{1}{n}\sum_{i=1}^n h(\mathbf{x}, \boldsymbol{\omega}^i) = 1/n\sum_{i=1}^n (\boldsymbol{d}(\boldsymbol{\omega}^i) - \boldsymbol{D}(\boldsymbol{\omega}^i)\mathbf{x})^\top \boldsymbol{\mu}(\boldsymbol{\omega}^i),$$

where $\mu(\omega^i)$, dual-optimal in scenario i, is data

By weak duality, for any $ar{x}$

$$\frac{1}{n}\sum_{i=1}^n h(\bar{\pmb{x}},\omega^i) \geq \frac{1}{n}\sum_{i=1}^n (\pmb{d}(\omega^i) - \pmb{D}(\omega^i)\bar{\pmb{x}})^\top \pmb{\mu}(\omega^i),$$

where everything but $ar{x}$ is data

heta usually underestimates $1/n\sum_{i=1}^n h({m x}, {m \omega}^i)$

Need cut involving θ , which tells master problem what x costs

By strong duality

$$\frac{1}{n}\sum_{i=1}^n h(\mathbf{x}, \boldsymbol{\omega}^i) = 1/n\sum_{i=1}^n (\boldsymbol{d}(\boldsymbol{\omega}^i) - \boldsymbol{D}(\boldsymbol{\omega}^i)\mathbf{x})^\top \boldsymbol{\mu}(\boldsymbol{\omega}^i),$$

where $\mu(\omega^i)$, dual-optimal in scenario i, is data

By weak duality, for any \bar{x}

$$\frac{1}{n}\sum_{i=1}^n h(\bar{\boldsymbol{x}},\omega^i) \geq \frac{1}{n}\sum_{i=1}^n (\boldsymbol{d}(\omega^i) - \boldsymbol{D}(\omega^i)\bar{\boldsymbol{x}})^\top \mu(\omega^i),$$

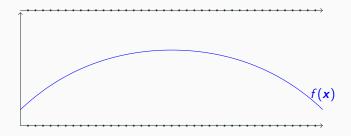
where everything but \bar{x} is data

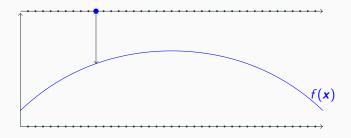
Therefore, we add cut

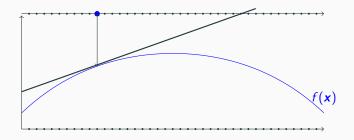
$$heta \geq rac{1}{n} \sum_{i=1}^n (oldsymbol{d}(oldsymbol{\omega}^i) - oldsymbol{D}(oldsymbol{\omega}^i) oldsymbol{x})^ op oldsymbol{\mu}(oldsymbol{\omega}^i)$$

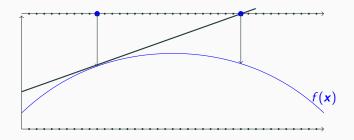
The Master Problem Might Now Look Like

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^n, \theta} \quad & \boldsymbol{c}^\top \mathbf{x} + \theta \\ \text{s.t.} \quad & \boldsymbol{A} \mathbf{x} \leq \boldsymbol{b}, \\ & \theta \geq \frac{1}{n} \sum_{i=1}^n (\boldsymbol{d}(\boldsymbol{\omega}^i) - \boldsymbol{D}(\boldsymbol{\omega}^i) \mathbf{x})^\top \boldsymbol{\mu}(\boldsymbol{\omega}^i), \\ & (\boldsymbol{d}(\boldsymbol{\omega}^i) - \boldsymbol{D}(\boldsymbol{\omega}^i) \mathbf{x})^\top \boldsymbol{\mu}(\boldsymbol{\omega}^i) \leq 0. \end{split}$$

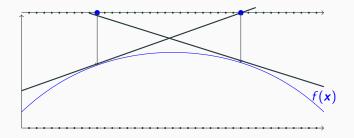




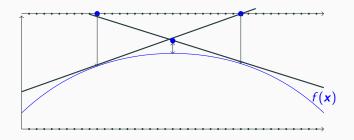




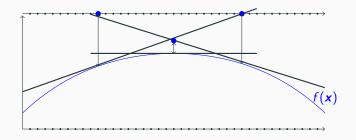
Benders Decomposition, in 1000 words



Benders Decomposition, in 1000 words



Benders Decomposition, in 1000 words



Sample Average Approximation: Code

You will write this yourself in the first

assignment :-)

Can we do Better? Ridge

Approximation

Regression and Sample-Average

Can we do Better Than the Sample-Average

Approximation?

Statisticians don't solve problems like

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \quad \frac{1}{n} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2$$

to pick β , despite SAA's properties. Why not?

Statisticians don't solve problems like

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \quad \frac{1}{n} \| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \|_2^2$$

to pick β , despite SAA's properties. Why not?

Because n is finite; we want β to perform as well as possible on an unseen observation (x_i, y_i) , not just minimize training error.

Statisticians don't solve problems like

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \quad \frac{1}{n} \| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \|_2^2$$

to pick β , despite SAA's properties. Why not?

Because n is finite; we want β to perform as well as possible on an unseen observation (x_i, y_i) , not just minimize training error. They solve

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^p} \quad \frac{1}{n} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + R(\boldsymbol{\beta}),$$

where $R(\cdot)$ is a regularization term, e.g., $\frac{1}{2\gamma}\|\beta\|_2^2 + \lambda\|\beta\|_1$ for appropriately chosen λ, γ (elastic net method, Zou and Hastie 2005).

Statisticians don't solve problems like

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \quad \frac{1}{n} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2$$

to pick β , despite SAA's properties. Why not?

Because n is finite; we want β to perform as well as possible on an unseen observation (x_i, y_i) , not just minimize training error. They solve

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \quad \frac{1}{n} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + R(\boldsymbol{\beta}),$$

where $R(\cdot)$ is a regularization term, e.g., $\frac{1}{2\gamma}\|\beta\|_2^2 + \lambda\|\beta\|_1$ for appropriately chosen λ, γ (elastic net method, Zou and Hastie 2005).

This usually performs better out-of-sample.

 In the 2000s, sample-average approximation was a very popular method for optimizing under uncertainty

- In the 2000s, sample-average approximation was a very popular method for optimizing under uncertainty
- In the early 2010s, the community became more aware of the danger of overfitting, and in particular that SAA tends to be overly optimistic w.r.t. its out-of-sample performance. Since then, variants of SAA that account for overfitting with better finite-sample guarantees have become popular

- In the 2000s, sample-average approximation was a very popular method for optimizing under uncertainty
- In the early 2010s, the community became more aware of the danger of overfitting, and in particular that SAA tends to be overly optimistic w.r.t. its out-of-sample performance. Since then, variants of SAA that account for overfitting with better finite-sample guarantees have become popular
- We still teach SAA, because you need to understand SAA first

- In the 2000s, sample-average approximation was a very popular method for optimizing under uncertainty
- In the early 2010s, the community became more aware of the danger of overfitting, and in particular that SAA tends to be overly optimistic w.r.t. its out-of-sample performance. Since then, variants of SAA that account for overfitting with better finite-sample guarantees have become popular
- We still teach SAA, because you need to understand SAA first
- Variants intimately related to distributional robustness (see Lecture 8)

- In the 2000s, sample-average approximation was a very popular method for optimizing under uncertainty
- In the early 2010s, the community became more aware of the danger of overfitting, and in particular that SAA tends to be overly optimistic w.r.t. its out-of-sample performance. Since then, variants of SAA that account for overfitting with better finite-sample guarantees have become popular
- We still teach SAA, because you need to understand SAA first
- Variants intimately related to distributional robustness (see Lecture
 8)
- For more on this, see: Bertsimas, Dimitris, Vishal Gupta, and Nathan Kallus. "Robust sample average approximation."
 Mathematical Programming 171.1 (2018): 217-282.

Extension: Benders Decomposition for Facility Location

See slides by Fischetti (2017)

Suggested Readings to Accompany Today's Lecture

A friendly reminder:

"To get as much out of this class as possible, we suggest that you spend at least as much time on reading the papers and textbooks referenced in the lectures/reviewing the lectures as you spend in class." — The syllabus

Recommended reading:

 Shapiro, Dentcheva, Ruszczynski Lectures on Stochastic Programming: Modeling and Theory (2013), Chapters 1.1 and 2.

Optional further reading:

- Recht Lecture 1. In CS294 The Mathematics of Data Science lecture notes, UC Berkeley (2013).
- Kim, Pasupathy, Henderson A Guide to Sample-Average Approximation. In: Handbook of simulation optimization (2015).

Thank you, and see you next week!