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Outline of Lecture 3

Sample Average Approximation and Beyond

Improvement Strategy 1: Predictive to Prescriptive Analytics

Improvement Strategy 2: Smart “Predict Then Optimize”

Let’s Look at Some Code on Prescriptive SAA For Next Part of Lecture
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Warm-up: Let’s Make a Deal

Imagine you are on a game-show, and you have the choice of three doors.

Behind one door is a car, behind the other two doors are goats.

While goats make great pets, you prefer a car.

You pick a door, say door 1.

The host opens door 3, which has a goat.

She then asks you if you want to switch to door 3. Should you switch?
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This Problem is About Conditional Expectations

• When you first picked a door, there was a 1/3 chance of winning a

car if you picked door 2

• After door 3 was opened, the odds that a car was behind door 2

increased to 2/3. Why?

• 9 equally likely combinations of door goat is behind, door you pick

• For 3/9 combinations, you win if you stay

• For 6/9 combinations, you win if you switch

• Before opening door 3, we were indifferent between doors 1–2. After

opening door 3, we prefer door 2. The side information we obtained

by opening a door materially affected the best decision

4
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Sample Average Approximation

and Beyond



Classical OR (Sample Average Approximation)

Models Decisions

OR

This is what you saw in your first optimization class
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ML Today

Data Models Decisions

Predictions

ML OR

This is what you would see in an ML class
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The future: Personalized Sample Average Approximation

Data Models Decisions

Predictions

ML OR

Optimization in the world as it should be, if not the world as it is.

Because data is the objective reality we use to design models, models only

exist in our imagination. And we should use data to improve decisions.

Let’s concretize with an example.
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Real Problem Setting: Big-Data Newsvendor

We run a hospital, and must decide how many nurses to schedule for

tomorrow’s shift. We have n observations of:

• The demand for the number of nurses in day i ∈ [n], Di

• The vector zi ∈ Rp, which contains p different features (e.g. flu

infection rates in the population, unemployment rate, current

median rent, . . . ) predictive of demand Di .

Assume demand observations Di and side information zi jointly drawn

independently from “ground truth” distribution, and we have access to z ,
the vector of different features, for today’s setting

Discuss Among Yourselves: How should we set the number of nurses

x , where each nurse needs to be paid c to work for the day, can charge

the govt q per nurse if there is demand?

Formally: max
x≥0

Eω[min(Dω, x)q − cx |z ]

See Ban and Rudin (OR 2019) for a detailed study of problem setting
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How do practitioners solve this problem?
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Approach 1: Classical OR/SAA (“Adjust Your Expectations”)

Ignore the side information z , don’t solve

max
x≥0

Eω[min(Dω, x)q − cx |z ]

Instead, solve

max
x≥0

Eω[min(Dω, x)q − cx ]

via its sample-average approximation

max
x≥0

1

n

n∑
i=1

min(Di , x)q − cx

Like we talked about last week

• Pros: SAA converges almost surely to an optimal solution where we

don’t have any side information

• Cons: even when we have infinite data and know the marginal

distribution of D, we leave something on the table by ignoring z
(e.g., what if z perfectly predicts D?)
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Approach 2: (Naive) Predict-then-optimize

Take a two-step approach:

1. Predict: Use historical observations (zi ,Di )i∈[N] to create a model

for how D depends on z , say D̂ = f (z), where f is our trained

model and D̂ our prediction

2. Optimize: Solve the optimization problem assuming D̂ = f (z),
output the solution x = D̂

3. But this is obviously suboptimal! (Recall the critical fractile result)

Where did we go wrong? The best prediction is not the best decision

Accounted for side information, but forgot to account for uncertainty.

What we should do: leverage the data z to make the best decision

possible. One approach for this: construct model of conditional

distribution D|z from historical data, minimize sample-average

approximation over conditional distribution.

Called personalized SAA/contextual optimization
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Aside: How Ban and Rudin Solved This for Newsvendors

Approach 3: leverage knowledge of critical fractile result, train ML model

to predict an optimal solution directly from context z using a linear

decision rule

Pros: optimal in large-sample settings, very efficient, nice guarantees.

Completely solves the Newsvendor problem

Cons: unclear how to generalize to settings with constraints
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Plan for Rest of Lecture

The “best” way of performing personalized SAA is (in my view) not fully

resolved. Therefore, we discuss several approaches from the literature,

and their pros/cons. Note that not all aspects of what we discuss today

will be as satisfying as last week, since this isn’t a solved problem.

Nonetheless, I think showing you things we don’t know how to do yet is

as important as things we do know how to do

12
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Contextual Optimization: Full Problem Setting

• We have data (D i , z i )i∈[N] from observations of a stochastic

process, where D is a random variable that appears in our

optimization problem, and z is broadly predictive of D

• Given this data, and side information z , we want to solve for

x(z) ∈ arg min
x∈X

EP(D|z)[f (x ,D)|Z = z ],

where X is our feasible region, f is our objective function

• In general, x(z) might need to be a function of z , which makes

optimizing over the space of policies x(z) hard

13
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Before looking at methods, let’s verify the

importance of the problem setting by looking

at more examples

13



Contextual Optimization: Variance-Based Portfolio Selection

Problem setting:

• Universe of p assets with random future returns ri

• We want to pick x ∈ Rp
+ : e⊤x = 1 to minimize a weighted sum of

variance minus expected return, given the context z , which captures

relevant side information (e.g., interest rates, oil prices)

• Formally:

min
x∈Rp

+: e⊤x=1,γ∈R
Er |z

( p∑
i=1

xi ri − γ

)2

− λr⊤x

∣∣∣∣∣z
 ,

where λ balances the importance of risk/return.

Quiz: who can tell me why first term is valid formulation of variance

V[r⊤x ] = E[(r⊤x − E[r⊤x ])2]

14
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Answering the Real Questions: Getting Coffee Before Work

• Ryan is deciding whether he has time to get a coffee before work K
• He believes (??) it will make him 2x as productive for next 30 mins

• Travel time is uncertain: if a Santander bike is available, it will take

20 minutes. Otherwise, he’s walking, and it will take 40 mins.

• Assume a Santander bike is available w.p. 0.5: indifferent to coffee

• Context: if Ryan’s phone says there is currently a bike, the odds that

one will be available in 5 mins time are much higher. So a valid

decision rule is: if phone says bike available, get coffee

15
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Improvement Strategy 1:

Predictive to Prescriptive

Analytics



Predictive to Prescriptive Analytics

Proposed by Bertsimas and Kallus (Management Science, 2020).

Two-step approach:

1. Use supervised learning to pick weights w i
N(z) to assign to each

data point i such that
∑N

i=1 w
i
N(z) = 1∀ z . Ideally, the weights

w i
N(z) and the data points Di comprise a good approximation to the

conditional distribution D|z .
2. Optimize a sample-average approximation under this conditional

distribution, i.e., solve

x⋆(z) ∈ arg min
x∈X

n∑
i=1

w i
N(z)f (x ,D

i ) ≈ arg min
x∈X

EP(D|z)[f (x ,D)|Z = z ]

Theorem: if f (x ,D i ) convex and X convex, can compute x⋆(z) in
polynomial time.

16
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The Approach in More Detail: Picking w

How do we pick w?

According to Bertsimas and Kallus (2020):

• Keep the values Di we observed from data

• Change the weights assigned to each point Di depending on z (in

SAA, wi = 1/N ∀i), say w i
N(z)

• How to assign weights? kNN, decision trees, random forests, . . .

kNN case:

min
x∈X

∑
i∈[N]:z i is a kNN of z

1

k
f (x ,D i )

17
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kNN case:

min
x∈X

∑
i∈[N]:z i is a kNN of z

1

k
f (x ,D i )
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Fitting k nearest neighbors, visualized
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Fitting k nearest neighbors, visualized
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Fitting the k nearest neighbors. visualized
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Many Clustering Strategies are Possible, But Use Caution

21



CART Approach
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CART Approach
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CART Approach

Implied binning rule: divide the region of feasible side information inputs,

and use different policies depending on the region side information

inhabits.
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Random Forest Approach

Average over decision trees in forest, to “smooth out” dividing lines

between feasible regions.

Aside: do you know what a random forest/CART/XGBoost etc. are?
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Discussion: Advantages and Disadvantages of the Framework

• Pros: Conceptually simple—use ML to update the weights on the

sample-average approximation, then apply SAA. Tractable.

Materially improves on SAA in practice. Converges to an optimal

contextual policy as N increases when the ML model is appropriate.

• Cons: Fixing the data Di and modifying the weights might leave

something on the table:

• Hint for a project (paper?): use optimal transport to improve

predictive-to-prescriptive (optimal transport with Wasserstein

distance would let you move around the weights)

And not clear that a two-step approach is optimal vs. jointly

optimizing the ML predictor and the optimization
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Let’s take a break here.
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Improvement Strategy 2: Smart

“Predict Then Optimize”



Smart “Predict-then-Optimize”

Elmachtoub and Grigas (2022) study the following problem:

Given context z , solve

min
x∈X

ED∼Dz [D
⊤x |z ] = ED∼Dz [D|z ]⊤x (linearity of expectation)

with goal of minimizing decision error on D⊤x , not prediction error on x

Figure 1: Illustration from Elmachtoub and Grigas (2022, Fig 1): feasible

region X affects how much “room for error” there is.
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Smart “Predict-then-Optimize”

To address problem, Elmachtoub and Grigas (2022) propose regret

minimization. i.e., ensure good worst-case performance by minimizing

quantities related to

c(D̂,D) := D⊤x⋆(D̂)︸ ︷︷ ︸
cost using prediction

− D⊤x⋆(D)︸ ︷︷ ︸
cost if we predicted perfectly

,

where x⋆(D) is an optimal choice of x under realization D (take to be

unique for convenience), D̂ is our predicted realization

Concretely, using the SAA/ERM principle, we ideally want to minimize

min
f∈H

1

N

N∑
i=1

c(f (zi ),Di ),

where f is predictor of D̂, H is class of ML models we select f from

Objective non-convex, usually intractable (could be discontinuous)
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Smart “Predict-then-Optimize”

To address intractability, convexify the loss function c (details of precisely

how this is a convexification are unimportant; see their paper)

ĉ(D̂,D) = max
x∈X

{(D − 2D̂)⊤x}+ 2D⊤x⋆(D̂)− D⊤x⋆(D)

One can show that this loss is a differentiable convex surrogate of c

Therefore, solve

min
f∈H

1

N

N∑
i=1

ĉ(f (zi ),Di ),

by, e.g., leveraging duality to reformulate it as a single optimization

problem, or using gradient descent.
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Let’s Watch a 20-min Summary of SPO+ Paper, Then Discuss

20 minute summary video of their paper available [here]

30

https://www.youtube.com/watch?v=Hot26kyykaI


Discussion: What do we think of SPO?

Below is my take, it’s an active area so other researchers may disagree:

• Pros: achieves regret minimization under some conditions in the

linear objective setting; can show asymptotic optimality guarantees

• Cons: unclear what to do in the non-linear setting, since we have

Jensen’s inequality rather than linearity of expectation in that

setting, other parts of the approach heavily leverage linearity

• See Ho-Nguyen and Kilinc-Karzan (MS, 2022) for a discussion of

some positive and negative aspects of Elmachtoub and Grigas (2022)
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Summary

• We saw a new and quite important problem setting today:

contextual optimization

• We saw two proposals for obtaining good solutions to this problem,

and discussed when they are applicable

• This is quite an active research area, so it’s potentially a good one

to work on a project for

32



Let’s take a break here.
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Let’s Look at Some Code on

Prescriptive SAA For Next Part

of Lecture



Further Reading

• The Big Data Newsvendor: Practical Insights from Machine

Learning, Ban and Rudin (Operations Research, 2019)

• From Predictive to Prescriptive Analytics, Bertsimas and Kallus

(Management Science, 2020)

• Smart “Predict Then Optimize”, Elmachtoub and Grigas

(Management Science, 2022)

• End-to-end Prediction and Optimization, Ho-Nguyen and

Kilinc-Karzan (Management Science, 2022)
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