

15.095 Lecture 22b: Sparse PCA Under a Modern Optimization Lens

Guest lecture by Ryan Cory-Wright

November 2021

ORC, Massachusetts Institute of Technology Joint work with Dimitris Bertsimas, Jean Pauphilet

What is Principal Component Analysis?

- Project data onto few orthogonal directions that maximize variance.
- Find leading k principal components by singular value decomposition Σ = UΛU^T, and taking the first k columns of U.
- Allows us to compress a data matrix
 X ∈ ℝ^{n×p} into a smaller matrix
 *X*_{new} ∈ ℝ^{n×k} by setting *X*_{new} ← *U*_[1:k]*X*

Figure 1: A synthetic data set. Arrows indicate directions of first two principal components.

PCs are linear combinations of n original features. Often unacceptable!

- In medicine, decisions taken using PCs must be interpretable.
- In scientific applications, e.g., protein folding, each co-ordinate axis has a physical interpretation. Reduced co-ordinate axes should too.
- In financial applications, e.g., investing across index funds, each non-zero entry in each PC incurs a cost.

How do we fix Principal Component Analysis?

Impose sparsity constraint. Proposed by d'Aspermont et. al. (04, 07).

- Improves interpretability.
- Reduces susceptibility to noise.
- Reduces storage space required for reconstruction.

How do we fix Principal Component Analysis?

Impose sparsity constraint. Proposed by d'Aspermont et. al. (04, 07).

- Improves interpretability.
- Reduces susceptibility to noise.
- Reduces storage space required for reconstruction.

How do we fix Principal Component Analysis?

Impose sparsity constraint. Proposed by d'Aspermont et. al. (04, 07).

- Improves interpretability.
- Reduces susceptibility to noise.
- Reduces storage space required for reconstruction.

What's hard about this problem?

- Non-convex in continuous variables.
- Need binaries to model sparsity constraint.
- Not obvious how to build a mixed-integer conic representation.

Discrete Optimization

Branch & Bound: Moghaddam, Weiss and Avidan (06), Berk & Bertsimas (19)

Heuristics

Lasso: Zou, Hastie and Tibshirani (06) Power method: Journeé, Nesterov, Richtárik & Sepulchre (10), Yuan & Zhang (13)

Convex Relaxations

Semidefinite: d'Aspermont et. al. (04, 14). Sum-of-Squares: Ma & Wigderson (15)

*I*₁: Dey, Mazumder & Wang: (18)

Statistical Learning Theory

SDO tightness: Amini & Wainwright (08) Hypothesis testing: Berthet & Rigollet (13)

Discrete Optimization

Branch & Bound: Moghaddam, Weiss and Avidan (06), Berk & Bertsimas (19)

Heuristics

Lasso: Zou, Hastie and Tibshirani (06) Power method: Journeé, Nesterov, Richtárik & Sepulchre (10), Yuan & Zhang (13)

Convex Relaxations

Semidefinite: d'Aspermont et. al. (04, 14). Sum-of-Squares: Ma & Wigderson (15)

*I*₁: Dey, Mazumder & Wang: (18)

Statistical Learning Theory

SDO tightness: Amini & Wainwright (08) Hypothesis testing: Berthet & Rigollet (13)

Several fundamental questions remain unanswered:

Does sparse PCA admit a mixed-integer conic formulation?

• Could address sparse PCA using general-purpose decomposition schemes.

Can we obtain high-quality optimality gaps at scale?

Part I: Show sparse PCA exhibits *hidden* mixed-integer conic formulation; propose branch-and-cut method which scales to n = 100s, k = 10s.

Part II: Propose dual bounds which scale to n = 1,000s, k = 100s.

Part I: A Mixed-Integer Semidefinite Optimization (MISDO) Reformulation and A Cutting-Plane Method

 $\max_{\boldsymbol{z} \in \{0,1\}^n} \max_{\boldsymbol{x} \in \mathbb{R}^n} \langle \boldsymbol{x} \boldsymbol{x}^\top, \boldsymbol{\Sigma} \rangle \text{ s.t. } \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 1, \ x_i = 0 \text{ if } z_i = 0, \forall i \in [n], \boldsymbol{e}^\top \boldsymbol{z} \leq k.$

 $\max_{\boldsymbol{z} \in \{0,1\}^n} \max_{\boldsymbol{x} \in \mathbb{R}^n} \langle \boldsymbol{x} \boldsymbol{x}^\top, \boldsymbol{\Sigma} \rangle \text{ s.t. } \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 1, \ x_i = 0 \text{ if } z_i = 0, \forall i \in [n], \boldsymbol{e}^\top \boldsymbol{z} \le k.$

Non-convex. Therefore, *lift* by setting $\mathbf{X} = \mathbf{x}\mathbf{x}^{\top}$ and substituting:

 $\max_{\boldsymbol{z} \in \{0,1\}^n} \max_{\boldsymbol{X} \in S_+^n} \langle \boldsymbol{X}, \boldsymbol{\Sigma} \rangle \text{ s.t. } \operatorname{tr}(\boldsymbol{X}) = 1, X_{i,j} = 0 \text{ if } z_i = 0, \boldsymbol{e}^\top \boldsymbol{z} \leq k, \operatorname{Rank}(\boldsymbol{X}) = 1.$

 $\max_{\boldsymbol{z} \in \{0,1\}^n} \max_{\boldsymbol{x} \in \mathbb{R}^n} \langle \boldsymbol{x} \boldsymbol{x}^\top, \boldsymbol{\Sigma} \rangle \text{ s.t. } \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 1, \ x_i = 0 \text{ if } z_i = 0, \forall i \in [n], \boldsymbol{e}^\top \boldsymbol{z} \le k.$

Non-convex. Therefore, *lift* by setting $\mathbf{X} = \mathbf{x}\mathbf{x}^{\top}$ and substituting:

 $\max_{\boldsymbol{z} \in \{0,1\}^n} \max_{\boldsymbol{X} \in S^n_+} \langle \boldsymbol{X}, \boldsymbol{\Sigma} \rangle \text{ s.t. } \operatorname{tr}(\boldsymbol{X}) = 1, X_{i,j} = 0 \text{ if } z_i = 0, \boldsymbol{e}^\top \boldsymbol{z} \leq k, \operatorname{Rank}(\boldsymbol{X}) = 1.$

Still hard, due to rank constraint.

 $\max_{\boldsymbol{z} \in \{0,1\}^n} \max_{\boldsymbol{x} \in \mathbb{R}^n} \langle \boldsymbol{x} \boldsymbol{x}^\top, \boldsymbol{\Sigma} \rangle \text{ s.t. } \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 1, \ x_i = 0 \text{ if } z_i = 0, \forall i \in [n], \boldsymbol{e}^\top \boldsymbol{z} \le k.$

Non-convex. Therefore, *lift* by setting $\mathbf{X} = \mathbf{x}\mathbf{x}^{\top}$ and substituting:

 $\max_{\boldsymbol{z} \in \{0,1\}^n} \max_{\boldsymbol{X} \in S^n_+} \langle \boldsymbol{X}, \boldsymbol{\Sigma} \rangle \text{ s.t. } \operatorname{tr}(\boldsymbol{X}) = 1, X_{i,j} = 0 \text{ if } z_i = 0, \boldsymbol{e}^\top \boldsymbol{z} \leq k, \operatorname{Rank}(\boldsymbol{X}) = 1.$

Still hard, due to rank constraint. Magic trick: drop constraint w.l.o.g.

$$\max_{\boldsymbol{z} \in \{0,1\}^n} \max_{\boldsymbol{X} \in S_{\perp}^n} \langle \boldsymbol{X}, \boldsymbol{\Sigma} \rangle \text{ s.t. } \operatorname{tr}(\boldsymbol{X}) = 1, X_{i,j} = 0 \text{ if } z_i = 0, \boldsymbol{e}^\top \boldsymbol{z} \leq k.$$

$$\max_{\boldsymbol{z} \in \{0,1\}^n} \max_{\boldsymbol{X} \in S_{\perp}^n} \langle \boldsymbol{X}, \boldsymbol{\Sigma} \rangle \text{ s.t. } \operatorname{tr}(\boldsymbol{X}) = 1, X_{i,j} = 0 \text{ if } z_i = 0, \boldsymbol{e}^\top \boldsymbol{z} \leq k.$$

Why did we drop the rank constraint?

$$\max_{\boldsymbol{z} \in \{0,1\}^n} \max_{\boldsymbol{X} \in S_n^n} \langle \boldsymbol{X}, \boldsymbol{\Sigma} \rangle \text{ s.t. } \operatorname{tr}(\boldsymbol{X}) = 1, X_{i,j} = 0 \text{ if } z_i = 0, \boldsymbol{e}^\top \boldsymbol{z} \leq k.$$

Why did we drop the rank constraint?

Objective linear in X. Therefore, for any fixed z, some extreme point X is optimal. But all extreme X's are rank-one!

$$\max_{\boldsymbol{z} \in \{0,1\}^n} \max_{\boldsymbol{X} \in S_{\perp}^n} \langle \boldsymbol{X}, \boldsymbol{\Sigma} \rangle \text{ s.t. } \operatorname{tr}(\boldsymbol{X}) = 1, X_{i,j} = 0 \text{ if } z_i = 0, \boldsymbol{e}^\top \boldsymbol{z} \leq k.$$

Why did we drop the rank constraint?

Objective linear in X. Therefore, for any fixed z, some extreme point X is optimal. But all extreme X's are rank-one!

Sparse PCA exhibits hidden mixed-integer conic representability.

The following two problems attain the same optimal objective:

$$\begin{array}{ll} \max_{\boldsymbol{x} \in \mathbb{R}^n} & \boldsymbol{x}^\top \boldsymbol{\Sigma} \boldsymbol{x} \text{ s.t. } \boldsymbol{x}^\top \boldsymbol{x} = 1, \ ||\boldsymbol{x}||_0 \leq k, \\ \max_{\boldsymbol{z} \in \{0,1\}^n: \boldsymbol{e}^\top \boldsymbol{z} \leq k} & \max_{\boldsymbol{X} \in S^n_+} & \langle \boldsymbol{\Sigma}, \boldsymbol{X} \rangle \\ & \text{ s.t. } & \operatorname{tr}(\boldsymbol{X}) = 1, \ X_{i,i} = 0 \text{ if } z_i = 0, \ \forall i, j \in [n]. \end{array}$$

Proof: given feasible solution to one, construct feasible solution to other with equal/greater.

- Let x ∈ ℝ^{n×n} be a feasible in first. Immediate that (X := xx^T, z) feasible in second with equal cost, z_i = 1 if |x_i| > 0, z_i = 0 o/w.

So what? MISDOs are notoriously hard!

Therefore, solve using ideas from SDO, but in semidefinite-free fashion.

Therefore, solve using ideas from SDO, but in semidefinite-free fashion.

The problem: $\max_{z \in \{0,1\}^n: e^\top z \le k} f(z)$

where
$$f(\boldsymbol{z}) = \max_{\boldsymbol{X} \in S^n_+} \langle \boldsymbol{X}, \boldsymbol{\Sigma} \rangle$$
 s.t. $\operatorname{tr}(\boldsymbol{X}) = 1, |X_{i,j}| \leq M_{i,j} z_i, \boldsymbol{e}^{ op} \boldsymbol{z} \leq k,$

Therefore, solve using ideas from SDO, but in semidefinite-free fashion. The problem: $\max_{z \in \{0,1\}^n: e^\top z \le k} f(z)$

where
$$f(\boldsymbol{z}) = \max_{\boldsymbol{X} \in S_+^n} \langle \boldsymbol{X}, \boldsymbol{\Sigma} \rangle$$
 s.t. $\operatorname{tr}(\boldsymbol{X}) = 1, |X_{i,j}| \leq M_{i,j} z_i, \boldsymbol{e}^\top \boldsymbol{z} \leq k,$

where $M_{i,j} = \frac{1}{2}$ if $i \neq j$ and $M_{i,i} = 1$ (why is this a valid M?)

Therefore, solve using ideas from SDO, but in semidefinite-free fashion. The problem: $\max_{z \in \{0,1\}^n: e^\top z \le k} f(z)$

where
$$f(\boldsymbol{z}) = \max_{\boldsymbol{X} \in S^{+}_{+}} \langle \boldsymbol{X}, \boldsymbol{\Sigma} \rangle$$
 s.t. $\operatorname{tr}(\boldsymbol{X}) = 1, |X_{i,j}| \leq M_{i,j} z_i, \boldsymbol{e}^{\top} \boldsymbol{z} \leq k$,

where $M_{i,j} = \frac{1}{2}$ if $i \neq j$ and $M_{i,i} = 1$ (why is this a valid M?)

By strong duality:

Saddle Point Reformulation

$$f(\mathbf{z}) = \min_{\alpha \in S^n, \lambda} \lambda - \sum_{i=1}^n M_{i,j} z_i \sum_{j=1}^n |\alpha_{i,j}| \text{ s.t. } \lambda \mathbb{I} + \alpha \succeq \Sigma$$

which proves f(z) is concave in z (why?).

We solve saddle-point reformulation via outer-approximation

$$\max_{\mathbf{z}\in\{0,1\}^{n}: \mathbf{e}^{\top}\mathbf{z}\leq k} \min_{\alpha\in S^{n}, \lambda} \lambda - \sum_{i=1}^{n} z_{i} \sum_{j=1}^{n} M_{i,j} |\alpha_{i,j}| \text{ s.t. } \lambda \mathbb{I} + \alpha \succeq \boldsymbol{\Sigma}.$$

We solve saddle-point reformulation via outer-approximation

$$\max_{\mathbf{z}\in\{0,1\}^{n}: \mathbf{e}^{\top}\mathbf{z}\leq k} \min_{\alpha\in S^{n}, \boldsymbol{\lambda}} \lambda - \sum_{i=1}^{n} z_{i} \sum_{j=1}^{n} M_{i,j} |\alpha_{i,j}| \text{ s.t. } \lambda \mathbb{I} + \alpha \succeq \boldsymbol{\Sigma}.$$

Outer-Approximation Procedure

- Iteratively construct a piece-wise linear upper approximation.
- Implemented using lazy constraint callbacks in CPLEX/Gurobi.
- In practice, tractable. But benefits from warm-starting.

We solve saddle-point reformulation via outer-approximation

$$\max_{\mathbf{z}\in\{0,1\}^{n}: \mathbf{e}^{\top}\mathbf{z}\leq k} \min_{\alpha\in S^{n}, \boldsymbol{\lambda}} \lambda - \sum_{i=1}^{n} z_{i} \sum_{j=1}^{n} M_{i,j} |\alpha_{i,j}| \text{ s.t. } \lambda \mathbb{I} + \alpha \succeq \boldsymbol{\Sigma}.$$

Subproblem Strategy

- For fixed z, subproblem easy to solve: λ^{*} = λ_{max}(Σ_{z,z}), where Σ_{z,z} is submatrix of Σ induced by z, α^{*} = (I − Diag(z))Σ(I − Diag(z)).
- Subproblem solvable in $O(k^2)$ time!

Let A be a positive semidefinite matrix and for each *i* let $R_i := \sum_{j \neq i} |A_{i,j}|$ be absolute sum of off-diagonal entries in *i*th column. Then,

- (a) For each eigenvalue λ_i of A, there exists some index j such that $|\lambda_i A_{j,j}| \le R_j$.
- (b) If the union of *I* discs [*R_j* − *A_{j,j}*, *R_j* + *A_{j,j}*] does not overlap with any of the remaining *n* − *I* discs then exactly *I* eigenvalues of *A* lie within these discs.

Proof: definition of eigenvalue+triangle inequality, see Wikipedia.

The Gershgorin Circle Theorem in Pictures

Worked example from Wikipedia: Consider the matrix $\begin{pmatrix} 10 & -1 & 0 & 1 \\ 0.2 & 8 & 0.2 & 0.2 \\ 1 & 1 & 2 & 1 \\ -1 & -1 & -1 & -11 \end{pmatrix}$. Discs are D(10, 2), D(8, 0.6), D(2, 3), D(-11, 3). Plot shows discs and actual eigenvalues.

Strengthening the Master Problem

Outer-approximation benefits from strengthening master problem. To strengthen it, invoke Gershgorin circle theorem. We have the bound:

$$f(\mathbf{z}) \leq \max_{i \in [n]: z_i = 1} \sum_{j \in [n]} z_j |\Sigma_{i,j}|.$$

Strengthening the Master Problem

Outer-approximation benefits from strengthening master problem. To strengthen it, invoke Gershgorin circle theorem. We have the bound:

$$f(\mathbf{z}) \leq \max_{i \in [n]: z_i=1} \sum_{j \in [n]} z_j |\Sigma_{i,j}|.$$

Bound non-convex, but can model using *n* extra binary variables. Gives:

Gershgorin Circle Theorem Inequalities

$$\exists \boldsymbol{s} \in \{0,1\}^n, t \in \mathbb{R} : f(\boldsymbol{z}) \le t, t \ge \sum_{i \in [n]} z_i |\Sigma_{i,j}|,$$

$$t \le \sum_{i \in [n]} z_i |\Sigma_{i,j}| + M(1-s_i), \boldsymbol{e}^\top \boldsymbol{s} = 1.$$

Strengthens formulation, and give hints about where to branch next.

Dataset	n	k	Outer-Approx			Outer-Approx+ Circle Theorem		
			Time(s)	Nodes	Cuts	Time(s)	Nodes	Cuts
Pitprops	13	5	0.30	1,608	1,176	0.06	38	8
		10	0.14	414	387	0.02	18	21
Wine	13	5	0.57	2,313	1,646	0.02	46	11
		10	0.17	376	311	0.03	54	58
Miniboone	50	5	0.01	0	11	0.01	0	3
		10	0.01	0	16	0.02	0	3
Communities	101	5	> 600	28,462	25,843	0.20	201	3
		10	> 600	37, 479	36,251	0.34	406	39
Arrhythmia	274	5	> 600	42, 474	13, 595	6.07	135	1,233

Solves problems where n = 100s, k = 10s in seconds or minutes.

Part II: Scalable dual bounds

• Branch-and-bound great, but only **proves** optimality when n = 100s.

- Branch-and-bound great, but only **proves** optimality when n = 100s.
- We now propose a method which provides (near) optimality guarantees when *n* = 1000s.

Background: Second-order Cone Optimization

A generic second-order cone problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad \boldsymbol{c}^\top \boldsymbol{x} \\ \text{s.t.} \quad \|\boldsymbol{A}_i^\top \boldsymbol{x} + b_i\|_2 \le c_i^\top \boldsymbol{x} + d_i, \ \forall i \in [m], \ \boldsymbol{D} \boldsymbol{x} = \boldsymbol{d}.$$

Modeling power:

- Linear inequalities.
- Convex quadratics.
- Portfolio risk and chance constraints.

Why is this useful?

• Most general continuous problem can solve to optimality at scale.

How to solve?

• Mosek or Gurobi (interior point method).

Modeling Power: Rotated Second-order Cone Constraints

A large class of problems can be cast as second-order cone problems since

(a)
$$x^{2} \leq yz, y, z \geq 0 \iff \left\| \begin{pmatrix} 2x \\ y-z \end{pmatrix} \right\|_{2} \leq y+z,$$

(b) $\mathbf{x}_{i}^{\top} \mathbf{P}_{i} \mathbf{x} + 2q_{i}^{\top} \mathbf{x} + r_{i} \leq 0 \iff \left\| \mathbf{P}_{i}^{\frac{1}{2}} \mathbf{x} + \mathbf{P}_{i}^{\frac{-1}{2}} \mathbf{q}_{i} \right\|_{2} \leq \left(q_{i}^{\top} \mathbf{P}_{i}^{-1} q_{i} - r_{i} \right)^{\frac{1}{2}}$
(c) $t \geq x^{\frac{3}{2}}, x \geq 0 \iff \exists s : 2st \geq x^{2}, \frac{1}{4}x \geq s^{2}$

And many other problems! Good places to look are:

The constraint $\pmb{X} \succeq \pmb{0}$ can be expensive. Therefore, relax. Recall: $\pmb{X} \succeq \pmb{0}$ if and only if

 $\mathbf{x}^{\top} \mathbf{X} \mathbf{x} \ge 0, \forall \mathbf{x} : \|\mathbf{x}\|_2 = 1,$

and only considering $\mathbf{x} = \frac{\sqrt{2}}{2} (\mathbf{e}_i + \mathbf{e}_j)$, i.e.,

$$\mathbf{x}^{ op} \mathbf{X} \mathbf{x} \geq 0, \forall \mathbf{x} = rac{\sqrt{2}}{2} (\mathbf{e}_i + \mathbf{e}_j)$$

i.e., $X_{i,i}X_{j,j} \ge X_{i,j}^2 \ \forall i,j$ is a valid outer approximation.

Obtain scalability by relaxing and rounding.

Start by relaxing $z \in \{0,1\}^p$ to $z \in [0,1]^p$. Gives:

 $\max_{\boldsymbol{z} \in [0,1]^{p}: \boldsymbol{e}^{\top} \boldsymbol{z} \leq k} \max_{\boldsymbol{X} \succeq \boldsymbol{0}} \quad \langle \boldsymbol{\Sigma}, \boldsymbol{X} \rangle \quad \text{s.t.} \quad \operatorname{tr}(\boldsymbol{X}) = 1, \quad |X_{i,j}| \leq M_{i,j} z_i \; \forall i,j.$

Obtain scalability by relaxing and rounding.

Start by relaxing $z \in \{0,1\}^p$ to $z \in [0,1]^p$. Gives:

 $\max_{\boldsymbol{z} \in [0,1]^p: \boldsymbol{e}^\top \boldsymbol{z} \leq k} \max_{\boldsymbol{X} \succeq \boldsymbol{0}} \quad \langle \boldsymbol{\Sigma}, \boldsymbol{X} \rangle \quad \text{s.t.} \quad \operatorname{tr}(\boldsymbol{X}) = 1, \quad |X_{i,j}| \leq M_{i,j} z_i \; \forall i,j.$

Remaining expensive bit is $X \succeq 0$, holds if principal minors non-negative.

Obtain scalability by relaxing and rounding.

Start by relaxing $z \in \{0,1\}^p$ to $z \in [0,1]^p$. Gives:

 $\max_{\boldsymbol{z} \in [0,1]^p: \boldsymbol{e}^\top \boldsymbol{z} \leq k} \max_{\boldsymbol{X} \succeq \boldsymbol{0}} \quad \langle \boldsymbol{\Sigma}, \boldsymbol{X} \rangle \quad \text{s.t.} \quad \operatorname{tr}(\boldsymbol{X}) = 1, \quad |X_{i,j}| \leq M_{i,j} z_i \; \forall i,j.$

Remaining expensive bit is $X \succeq 0$, holds if principal minors non-negative.

Relax, by only enforcing non-negativity on 2×2 minors, and impose some extra valid inequalities. Gives:

A Scalable Second-Order Cone Relaxation

$$\max_{\substack{\boldsymbol{z} \in [0,1]^{p}: \, \boldsymbol{X} \in \mathcal{S}^n \\ \boldsymbol{e}^\top \boldsymbol{z} \leq k}} \max_{\boldsymbol{X} \in \mathcal{S}^n} \langle \boldsymbol{\Sigma}, \boldsymbol{X} \rangle \text{ s.t. } \operatorname{tr}(\boldsymbol{X}) = 1, \ |X_{i,j}| \leq M_{i,j} z_i, X_{i,j}^2 \leq X_{i,i} X_{j,j}.$$

Two valid inequalities:

- From Cauchy-Schwarz, $\|\boldsymbol{x}\|_0 \leq k$ and $\|\boldsymbol{x}\|_2 \leq 1$ imply $\|\boldsymbol{x}\|_1 \leq \sqrt{k}$. Therefore, since \boldsymbol{X} models $\boldsymbol{x}\boldsymbol{x}^{\top}$, we have $\|\boldsymbol{X}\|_1 \leq k$.
- Since $z_i = x_i z_i$ and $\|\mathbf{x}\|_2 = 1$, we have $\sum_{i=1}^n X_{i,j}^2 = \sum_{i=1}^n x_i^2 x_j^2 = x_i^2 = x_i^2 z_i = X_{i,i} z_i$. This gives the valid inequality:

$$\sum_{i=1}^{n} X_{i,j}^2 \le X_{i,i} z_i, \ \forall i \in [n]$$

A Strong and Scalable Second-Order Cone Relaxation

How to get feasible solutions?

A Strong and Scalable Second-Order Cone Relaxation

How to get feasible solutions?

Solve relaxation, round z^* solution to relaxation greedily, resolve for X.

Performance of Relax and Round

Dataset	р	k	Relative Gap (%)	Time (s)
Pitprops	13	5	1.51%	0.02
		10	5.29%	0.02
Miniboone	50	5	0.00%	0.11
		10	0.00%	0.12
		20	0.00%	0.39
Communities	101	5	0.07%	0.67
		10	0.66%	0.68
		20	3.32%	1.84
Arrhythmia	274	5	3.37%	27.2
		10	3.01%	25.6
		20	8.87%	21.8
Micromass	1300	5	0.04%	239.4
		10	0.63%	232.6
		20	13.1%	983.5

Solves problems where n = 1000s, k = 100s in minutes or hours. Instances we can't solve via exact methods highlighted in blue. In relaxation, optimal \mathbf{X}^* is not, in general, positive semidefinite. Therefore, impose constraint $\mathbf{x}^\top \mathbf{X} \mathbf{x} \ge \mathbf{0}$ for a most violated \mathbf{x} in $\mathbf{x}^\top \mathbf{X}^* \mathbf{x} \ge \mathbf{0}$, and resolve.

Iteratively imposing inequality 20 times halves remaining gap.

Performance of Relax and Round With and Without 20 cuts

Dataset	р	k	Rel Gap (%)	T (s)	Rel Gap 20 cuts (%)	T (s)
Pitprops	13	5	1.51%	0.02	0.72%	0.36
		10	5.29%	0.02	1.12%	0.36
Miniboone	50	5	0.00%	0.11	0.00%	0.11
		10	0.00%	0.12	0.00%	0.12
		20	0.00%	0.39	0.00	0.39
Communities	101	5	0.07%	0.67	0.07%	14.8
		10	0.66%	0.68	0.66%	14.4
		20	3.32%	1.84	2.23%	33.5
Arrhythmia	274	5	3.37%	27.2	1.39%	203.6
		10	3.01%	25.6	1.33%	184.0
		20	8.87%	21.8	4.48%	426.8
Micromass	1300	5	0.04%	239.4	0.01%	4,639
		10	0.63%	232.6	0.32%	6,392
		20	13.1%	983.5	5.88%	16, 350

Solves problems where n = 1000s, k = 100s in minutes or hours.

Instances we can't solve via exact methods highlighted in blue.

Does this translate to better out-of-sample performance?

Set p = 150, k = 100, recover leading PC of $\Sigma = \frac{1}{n} U^{\top} U + \frac{\sigma}{\|v\|_2^2} vv^{\top}$ where U is i.i.d. uniform noise,

$$v_i = \begin{cases} 1 \text{ if } i \leq 50, \\ \frac{1}{i-50} \text{ if } 51 \leq i \leq 100 \\ 0 \text{ otherwise} \end{cases}$$

is signal, compute true positive and false positive rate as we vary kApproximate method yields better AUC than exact at scale!

Performance on Synthetic Data: Results

Thanks for listening! Questions?

Selected References

- A. A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization. SIAM J. Appl. Alg. Geom. 3(2):193-230 (2019).
- A. A. Ahmadi, S. Dash and G. Hall: Optimization over structured subsets of positive semidefinite matrices via column generation. Dist. Optim 24: 129–151 (2017).
- L. Berk and D. Bertsimas. Certifiably optimal sparse principal component analysis. Math. Prog. Comp. 11(3):381–420 (2019).
- D. Bertsimas and R. Cory-Wright. On Polyhedral and Second-Order-Cone Decompositions of Semidefinite Optimization Problems. Oper. Res. Letters 48(1):78-85 (2020).
- D. Bertsimas, R. Cory-Wright and J. Pauphilet. A unified approach to mixed-integer optimization problems with logical constraints. SIAM Journal on Optimization 31(3) 2340—2367 (2021).
- D. Bertsimas, R. Cory-Wright and J. Pauphilet. Solving large-scale sparse PCA to certifiable (near) optimality. Conditionally accepted at JMLR (2021+).
- S. Kim and M. Kojima: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comp. Opt. App. 26(2):143–154 (2003).
- F. Permenter and P. Parillo: Partial facial reduction: simplified, equivalent SDPs via approximations of the PSD cone. Math. Prog. **171**(1):1–54 (2018).