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What is Principal Component Analysis?

• Project data onto few orthogonal

directions that maximize variance.

• Find leading k principal components by

singular value decomposition Σ = UΛU>,

and taking the first k columns of U .

• Allows us to compress a data matrix

X ∈ Rn×p into a smaller matrix

Xnew ∈ Rn×k by setting Xnew ← U[1:k]X

Figure 1: A synthetic data set.
Arrows indicate directions of
first two principal components.
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What’s wrong with Principal Component Analysis?

PCs are linear combinations of n original features. Often unacceptable!

• In medicine, decisions taken using PCs must be interpretable.

• In scientific applications, e.g., protein folding, each co-ordinate axis

has a physical interpretation. Reduced co-ordinate axes should too.

• In financial applications, e.g., investing across index funds, each

non-zero entry in each PC incurs a cost.
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How do we fix Principal Component Analysis?

Impose sparsity constraint. Proposed by d’Aspermont et. al. (04, 07).

• Improves interpretability.

• Reduces susceptibility to noise.

• Reduces storage space required for reconstruction.

Problem Statement (one PC)

max
x ∈ Rn︸ ︷︷ ︸

leading principal component

〈xx>,Σ〉 s.t. 〈x , x〉 = 1, ‖x‖0 ≤ k.

What’s hard about this problem?

• Non-convex in continuous variables.

• Need binaries to model sparsity constraint.

• Not obvious how to build a mixed-integer conic representation.
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Literature Review: A vast literature on sparse PCA

Discrete Optimization

Branch & Bound: Moghaddam, Weiss and

Avidan (06), Berk & Bertsimas (19)

Heuristics

Lasso: Zou, Hastie and Tibshirani (06)

Power method: Journeé, Nesterov, Richtárik

& Sepulchre (10), Yuan & Zhang (13)

Convex Relaxations

Semidefinite: d’Aspermont et. al. (04, 14).

Sum-of-Squares: Ma & Wigderson (15)

l1: Dey, Mazumder & Wang: (18)

Statistical Learning Theory

SDO tightness: Amini & Wainwright (08)

Hypothesis testing: Berthet & Rigollet (13)

Several fundamental questions remain unanswered:

Does sparse PCA admit a mixed-integer conic formulation?

• Could address sparse PCA using general-purpose decomposition schemes.

Can we obtain high-quality optimality gaps at scale?
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Plan for lecture:

Part I: Show sparse PCA exhibits hidden mixed-integer conic formulation;

propose branch-and-cut method which scales to n = 100s, k = 10s.

Part II: Propose dual bounds which scale to n = 1, 000s, k = 100s.

5 / 29



Part I: A Mixed-Integer

Semidefinite Optimization

(MISDO) Reformulation and A

Cutting-Plane Method



A MISDO Reformulation I

Model cardinality constraint using binary variables:

max
z∈{0,1}n

max
x∈Rn

〈xx>,Σ〉 s.t. 〈x , x〉 = 1, xi = 0 if zi = 0,∀i ∈ [n], e>z ≤ k.

Non-convex. Therefore, lift by setting X = xx> and substituting:

max
z∈{0,1}n

max
X∈Sn

+

〈X ,Σ〉 s.t. tr(X ) = 1,Xi,j = 0 if zi = 0, e>z ≤ k,Rank(X ) = 1.

Still hard, due to rank constraint. Magic trick: drop constraint w.l.o.g.
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A MISDO Reformulation II

Mixed-Integer Conic Reformulation

max
z∈{0,1}n

max
X∈Sn

+

〈X ,Σ〉 s.t. tr(X ) = 1,Xi,j = 0 if zi = 0, e>z ≤ k.

Why did we drop the rank constraint?

Objective linear in X . Therefore, for any fixed z , some extreme point X
is optimal. But all extreme X ’s are rank-one!

Sparse PCA exhibits hidden mixed-integer conic representability.
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Formal proof of MISDO Reformulation

The following two problems attain the same optimal objective:

max
x∈Rn

x>Σx s.t. x>x = 1, ||x ||0 ≤ k ,

max
z∈{0,1}n:e>z≤k

max
X∈Sn

+

〈Σ,X 〉

s.t. tr(X ) = 1, Xi,j = 0 if zi = 0, ∀i , j ∈ [n].

Proof: given feasible solution to one, construct feasible solution

to other with equal/greater.

• Let x ∈ Rn×n be a feasible in first. Immediate that (X := xx>, z)

feasible in second with equal cost, zi = 1 if |xi | > 0, zi = 0 o/w.

• Let (X , z) be feasible in second, let X =
∑n

i=1 λixix
>
i be Cholesky

decomposition of X , where e>λ = 1,λ ≥ 0. Set

x̂ := arg maxi [x>i Σxi ]. Then, x̂ is feasible in first with equal or

greater payoff.
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So what? MISDOs are notoriously hard!
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Simplifying the Problem

General MISDOs are really hard.

Therefore, solve using ideas from SDO, but in semidefinite-free fashion.

The problem: maxz∈{0,1}n:e>z≤k f (z)

where f (z) = max
X∈Sn

+

〈X ,Σ〉 s.t. tr(X ) = 1, |Xi,j | ≤ Mi,jzi , e>z ≤ k,

where Mi,j = 1
2 if i 6= j and Mi,i = 1 (why is this a valid M?)

By strong duality:

Saddle Point Reformulation

f (z) = min
α∈Sn,λ

λ−
n∑

i=1

Mi,jzi

n∑
j=1

|αi,j | s.t. λI + α � Σ,

which proves f (z) is concave in z (why?).
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The Outer-Approximation Method

We solve saddle-point reformulation via outer-approximation

max
z∈{0,1}n:e>z≤k

min
α∈Sn,λ

λ−
n∑

i=1

zi

n∑
j=1

Mi,j |αi,j | s.t. λI + α � Σ.

Outer-Approximation Procedure

• Iteratively construct a piece-wise linear upper approximation.

• Implemented using lazy constraint callbacks in CPLEX/Gurobi.

• In practice, tractable. But benefits from warm-starting.
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How to solve the subproblem?

We solve saddle-point reformulation via outer-approximation

max
z∈{0,1}n:e>z≤k

min
α∈Sn,λ

λ−
n∑

i=1

zi

n∑
j=1

Mi,j |αi,j | s.t. λI + α � Σ.

Subproblem Strategy

• For fixed z , subproblem easy to solve: λ? = λmax(Σz,z), where Σz,z

is submatrix of Σ induced by z , α? = (I−Diag(z))Σ(I−Diag(z)).

• Subproblem solvable in O(k2) time!
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Outer Approximation in 1000 Words

f (z)
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The Gershgorin Circle Theorem

Let A be a positive semidefinite matrix and for each i let Ri :=
∑

j 6=i |Ai,j |
be absolute sum of off-diagonal entries in ith column. Then,

• (a) For each eigenvalue λi of A, there exists some index j such that

|λi − Aj,j | ≤ Rj .

• (b) If the union of l discs [Rj − Aj,j ,Rj + Aj,j ] does not overlap with

any of the remaining n − l discs then exactly l eigenvalues of A lie

within these discs.

Proof: definition of eigenvalue+triangle inequality, see Wikipedia.
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The Gershgorin Circle Theorem in Pictures

Worked example from Wikipedia: Consider the matrix
10 −1 0 1

0.2 8 0.2 0.2

1 1 2 1

−1 −1 −1 −11

 .

Discs are D(10, 2), D(8, 0.6), D(2, 3), D(−11, 3).

Plot shows discs and actual eigenvalues.
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Strengthening the Master Problem

Outer-approximation benefits from strengthening master problem. To

strengthen it, invoke Gershgorin circle theorem. We have the bound:

f (z) ≤ max
i∈[n]:zi=1

∑
j∈[n]

zj |Σi,j |.

Bound non-convex, but can model using n extra binary variables. Gives:

Gershgorin Circle Theorem Inequalities

∃s ∈ {0, 1}n, t ∈ R : f (z) ≤ t, t ≥
∑
i∈[n]

zi |Σi,j |,

t ≤
∑
i∈[n]

zi |Σi,j |+ M(1− si ), e>s = 1.

Strengthens formulation, and give hints about where to branch next.
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Performance of Outer-Approximation

Dataset n k Outer-Approx Outer-Approx+ Circle Theorem

Time(s) Nodes Cuts Time(s) Nodes Cuts

Pitprops 13 5 0.30 1, 608 1, 176 0.06 38 8

10 0.14 414 387 0.02 18 21

Wine 13 5 0.57 2, 313 1, 646 0.02 46 11

10 0.17 376 311 0.03 54 58

Miniboone 50 5 0.01 0 11 0.01 0 3

10 0.01 0 16 0.02 0 3

Communities 101 5 > 600 28, 462 25, 843 0.20 201 3

10 > 600 37, 479 36, 251 0.34 406 39

Arrhythmia 274 5 > 600 42, 474 13, 595 6.07 135 1, 233

Solves problems where n = 100s, k = 10s in seconds or minutes.
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Part II: Scalable dual bounds



Scalable Dual Bounds

• Branch-and-bound great, but only proves optimality when n = 100s.

• We now propose a method which provides (near) optimality

guarantees when n = 1000s.
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Background: Second-order Cone Optimization

A generic second-order cone problem:

min
x∈Rn

c>x

s.t. ‖A>i x + bi‖2 ≤ c>i x + di , ∀i ∈ [m], Dx = d .

Modeling power:

• Linear inequalities.

• Convex quadratics.

• Portfolio risk and chance constraints.

Why is this useful?

• Most general continuous problem can solve to optimality at scale.

How to solve?

• Mosek or Gurobi (interior point method).
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Modeling Power: Rotated Second-order Cone Constraints

A large class of problems can be cast as second-order cone problems since

(a) x2 ≤ yz , y , z ≥ 0 ⇐⇒

∥∥∥∥∥
(

2x

y − z

)∥∥∥∥∥
2

≤ y + z ,

(b) x>i Pix + 2q>i x + ri ≤ 0 ⇐⇒
∥∥∥P 1

2

i x + P
−1

2

i qi

∥∥∥
2
≤
(
q>i P−1

i qi − ri
) 1

2

(c) t ≥ x
3
2 , x ≥ 0 ⇐⇒ ∃s : 2st ≥ x2,

1

4
x ≥ s2

And many other problems! Good places to look are:
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Preamble to Part II: An Outer Approximation of the PSD Cone

The constraint X � 0 can be expensive. Therefore, relax. Recall: X � 0

if and only if

x>Xx ≥ 0,∀x : ‖x‖2 = 1,

and only considering x =
√

2
2 (ei + ej), i.e.,

x>Xx ≥ 0,∀x =

√
2

2
(ei + ej)

i.e., Xi,iXj,j ≥ X 2
i,j ∀i , j is a valid outer approximation.
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Our Convex Relaxation

Obtain scalability by relaxing and rounding.

Start by relaxing z ∈ {0, 1}p to z ∈ [0, 1]p. Gives:

max
z∈[0,1]p :e>z≤k

max
X�0

〈Σ,X 〉 s.t. tr(X ) = 1, |Xi,j | ≤ Mi,jzi ∀i , j .

Remaining expensive bit is X � 0, holds if principal minors non-negative.

Relax, by only enforcing non-negativity on 2× 2 minors, and impose

some extra valid inequalities. Gives:

A Scalable Second-Order Cone Relaxation

max
z∈[0,1]p :

e>z≤k

max
X∈Sn

〈Σ,X 〉 s.t. tr(X ) = 1, |Xi,j | ≤ Mi,jzi ,X
2
i,j ≤ Xi,iXj,j .
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Strengthening the Relaxation

Two valid inequalities:

• From Cauchy-Schwarz, ‖x‖0 ≤ k and ‖x‖2 ≤ 1 imply ‖x‖1 ≤
√
k .

Therefore, since X models xx>, we have ‖X‖1 ≤ k .

• Since zi = xizi and ‖x‖2 = 1, we have∑n
i=1 X

2
i,j =

∑n
i=1 x

2
i x

2
j = x2

i = x2
i zi = Xi,izi . This gives the valid

inequality:

n∑
i=1

X 2
i,j ≤ Xi,izi , ∀i ∈ [n]
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Putting it all together

A Strong and Scalable Second-Order Cone Relaxation

max
z∈[0,1]p :

e>z≤k

max
X∈Sn

〈Σ,X 〉 s.t. tr(X ) = 1, |Xi,j | ≤ Mi,jzi ,X
2
i,j ≤ Xi,iXj,j ∀i , j ,

‖X‖1 ≤ k ,
n∑

i=1

X 2
i,j ≤ Xi,izi︸ ︷︷ ︸

Valid Inequalities

.

How to get feasible solutions?

Solve relaxation, round z? solution to relaxation greedily, resolve for X .
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Performance of Relax and Round

Dataset p k Relative Gap (%) Time (s)

Pitprops 13 5 1.51% 0.02

10 5.29% 0.02

Miniboone 50 5 0.00% 0.11

10 0.00% 0.12

20 0.00% 0.39

Communities 101 5 0.07% 0.67

10 0.66% 0.68

20 3.32% 1.84

Arrhythmia 274 5 3.37% 27.2

10 3.01% 25.6

20 8.87% 21.8

Micromass 1300 5 0.04% 239.4

10 0.63% 232.6

20 13.1% 983.5

Solves problems where n = 1000s, k = 100s in minutes or hours.

Instances we can’t solve via exact methods highlighted in blue.
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Improving relax and round

In relaxation, optimal X ? is not, in general, positive semidefinite.

Therefore, impose constraint x>Xx ≥ 0 for a most violated x in

x>X ?x ≥ 0, and resolve.

Iteratively imposing inequality 20 times halves remaining gap.
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Performance of Relax and Round With and Without 20 cuts

Dataset p k Rel Gap (%) T (s) Rel Gap 20 cuts (%) T (s)

Pitprops 13 5 1.51% 0.02 0.72% 0.36

10 5.29% 0.02 1.12% 0.36

Miniboone 50 5 0.00% 0.11 0.00% 0.11

10 0.00% 0.12 0.00% 0.12

20 0.00% 0.39 0.00 0.39

Communities 101 5 0.07% 0.67 0.07% 14.8

10 0.66% 0.68 0.66% 14.4

20 3.32% 1.84 2.23% 33.5

Arrhythmia 274 5 3.37% 27.2 1.39% 203.6

10 3.01% 25.6 1.33% 184.0

20 8.87% 21.8 4.48% 426.8

Micromass 1300 5 0.04% 239.4 0.01% 4, 639

10 0.63% 232.6 0.32% 6, 392

20 13.1% 983.5 5.88% 16, 350

Solves problems where n = 1000s, k = 100s in minutes or hours.

Instances we can’t solve via exact methods highlighted in blue. 26 / 29



Does this translate to better out-of-sample

performance?
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Performance on Synthetic Data

Set p = 150, k = 100, recover leading PC of Σ = 1
nU
>U + σ

‖v‖2
2
vv>

where U is i.i.d. uniform noise,

vi =


1 if i ≤ 50,

1
i−50 if 51 ≤ i ≤ 100

0 otherwise

is signal, compute true positive and false positive rate as we vary k

Approximate method yields better AUC than exact at scale!
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Performance on Synthetic Data: Results
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Thanks for listening!

Questions?
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