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Integer and Matrix Optimization: A Nonlinear Approach

Many important problems from the operations research, machine learning, and statistics literature exhibit
either (a) logical relations between continuous variables x and binary variables z of the form “x = 0 if
z = 0”, or (b) rank constraints. Indeed, start-up costs in machine scheduling, financial transaction costs,
and cardinality constraints exhibit logical relations. Moreover, important problems such as factor analysis
and matrix completion, which model notions of minimal complexity, low dimensionality, or orthogonality in a
system, contain rank constraints. These constraints are viewed as separate entities and studied by separate
subfields—integer and global optimization—that propose different strategies for optimizing over them.

Since the work of Glover [12], logical relations have been well studied by the integer optimization community.
They are typically enforced through a “big-M” constraint of the form −Mz ≤ x ≤ Mz for a large constant
M > 0, and optimized over via branch-and-bound or branch-and-cut. Glover’s work has been so influential
that big-M constraints are now considered as intrinsic components of the problem formulations themselves, to
the extent that textbooks in the field introduce facility location, network design or sparse portfolio problems
with big-M constraints by default [see, e.g., 2], although they are actually reformulations of logical constraints.

On the other hand, rank constraints are commonly regarded as intractable by the global optimization and
machine learning communities, since they cannot be represented using mixed-integer convex optimization [15],
and there did not exist any generic codes that solve low-rank optimization problems to certifiable optimality
at even moderate problem sizes at the time this thesis was written (although we have since designed one
using the techniques described in this thesis [3]). This state of affairs has led influential works on low-rank
optimization such as [5] to characterize low-rank optimization as intractable and advocate convex relaxations
or heuristics that do not enjoy assumption-free optimality guarantees.

In this thesis, we adopt a different perspective on logical and rank constraints. We interpret both constraints
as purely algebraic ones: logical constraints are nonlinear constraints on a continuous scalar variable x of the
form x = z ◦ x for x continuous and z binary (meaning z2 = z), while rank constraints, Rank(X) ≤ k, are
a nonlinear constraint on a matrix X ∈ Rn×m of the form X = Y X intersected with a linear constraint
tr(Y ) ≤ k for an orthogonal projection matrix Y (meaning Y ∈ Sn,Y 2 = Y ). Under this lens, we show that
both constraints can be modeled in the same way, and thus optimized over using the same techniques (i.e.,
greedy rounding for provably near-optimal solutions, and branch-and-cut for certifiably optimal solutions). This
reveals that while sparsity constraints and rank constraints arise in different applications, and are addressed
by different research communities using different algorithms, they are two different facets of the same unified
story. In particular, algorithms that have been known to the mixed-integer community for almost 50 years can,
when adapted appropriately, solve both sparsity and rank-constrained problems more accurately and more
efficiently than algorithms that are currently considered to be state-of-the-art; see Table 1 for a summary of
the connections between logical and rank constraints made throughout the thesis.

The thesis comes in two parts: in the first part—consisting of Chapters 2–4—we explore how our framework
applies to logically constrained problems, and undertake detailed studies of its scalability for sparse portfolio
selection and sparse principal component analysis problems. In the second part—consisting of Chapters
5–6—we explore its implications for low-rank problems, by proposing a technique for solving low-rank problems
exactly and undertaking a detailed study of the convex relaxations of a class of low-rank problems.

In the rest of this document, we provide a summary of the publications that have arisen as a result of this
thesis, and provide a chapter-by-chapter summary of the main contributions of the thesis.
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Table 1: Analogy between mixed-integer and mixed-projection optimization derived throughout thesis.

Framework Chapters 2–4 Chapters 5–6

Parsimony concept Cardinality (∥x∥0 ≤ k for x ∈ Rn) Rank (Rank(Y ) ≤ k for X ∈ Rm×n)
Non-convex set Binaries (∃z ∈ R : z2 = z) Projection matrices (∃Y ∈ Sn : Y 2 = Y )

Non-linear formulation ∥x∥0 ≤ k ⇐⇒ ∃z : z ◦ z = z, Rank(X) ≤ k ⇐⇒ ∃Y : Y 2 = Y ,
x = z ◦ x, e⊤z ≤ k X = Y X, tr(Y ) ≤ k

Big-M reformulation ∥x∥0 ≤ k, ∥x∥∞ ≤ M ⇐⇒ Rank(X) ≤ k, ∥X∥σ ≤ M ⇐⇒
(for some large M > 0) ∃z : z ◦ z = z, ∃Y : Y 2 = Y ,

−Mz ≤ x ≤ Mz, e⊤z ≤ k

(
MY X
X⊤MI

)
⪰ 0, tr(Y ) ≤ k

Perspective reformulation ∥x∥0 ≤ k, 1
2γ ∥x∥

2
2 ≤ ρ ⇐⇒ Rank(X) ≤ k, 1

2γ ∥X∥2F ≤ ρ ⇐⇒
(for some γ > 0) ∃z,θ : z ◦ z = z, e⊤θ ≤ ρ, ∃Y ,θ : Y 2 = Y , tr(θ) ≤ ρ,(

θixi
xizi

)
⪰ 0 ∀i, e⊤z ≤ k

(
θ X

X⊤Y

)
⪰ 0, tr(Y ) ≤ k

Applications Sparse regression, portfolio selection, Rank regression, matrix completion

A More General Story: The framework proposed in this thesis exhibits an interesting connection to the
theory of Euclidean Jordan algebras. To model both sparsity and rank constraints, we work with idempotent
elements zi embedded in a Jordan algebra such that z2i = zi, zizj = 0 if i ̸= j and

∑n
i=1 zi = e, where e

denotes an identity of appropriate dimension; see [7] for an introduction to analysis over symmetric cones.
We can interpret both the cardinality of a vector x and the rank of a matrix X as a special case of the
Jordan-algebraic rank, i.e., the minimum number of idempotents required to provide a spectral decomposition
x =

∑n
i=1 λizi for a binary unit vector zi or X =

∑n
i=1 λiYi for projection matrices Yi. This suggests this

thesis could be extended to model other notions of Jordan-algebraic rank, e.g., the CP-rank of a tensor.

Related Publications:
The contents of this thesis are based on the following published papers (authors ordered alphabetically):
○ Chapter 2: D. Bertsimas, R. Cory-Wright, and J. Pauphilet. A unified approach to mixed-integer

optimization problems with logical constraints. SIAM Journal on Optimization 31(3), 2340-2367, 2021.
○ Chapter 3: D. Bertsimas and R. Cory-Wright. A scalable algorithm for sparse portfolio selection. INFORMS

Journal on Computing 34(3), 1489-1511, 2022.
○ Chapter 4: D. Bertsimas, R. Cory-Wright, and J. Pauphilet. Solving Large-Scale Sparse PCA to Certifiable

(Near) Optimality. Journal of Machine Learning Research 23, 13:1-13:35, 2022.
○ Chapter 5: D. Bertsimas, R. Cory-Wright, and J. Pauphilet. Mixed-projection conic optimization: A new

paradigm for modeling rank constraints. Operations Research 70(6), 3321-3344, 2022.
○ Chapter 6: D. Bertsimas, R. Cory-Wright, and J. Pauphilet. A new perspective on low-rank optimization.

Mathematical Programming, 202:47–92, 2023.

In addition, the following preprints and publications have arisen partly as follow-up work to this thesis:
○ D. Bertsimas and R. Cory-Wright. On polyhedral and second-order cone decompositions of semidefinite

optimization problems. Operations Research Letters, 48(1), 78-85, 2023.
○ D. Bertsimas, R. Cory-Wright, and N. A. G. Johnson. Sparse Plus Low Rank Matrix Decomposition: A

Discrete Optimization Approach. Journal of Machine Learning Research, 24: 1–51, 2023.
○ D. Bertsimas, R. Cory-Wright, S. Lo, and J. Pauphilet. Optimal Low-Rank Matrix Completion: Semidefinite

Relaxations and Eigenvector Disjunctions. arXiv:2305.12292, 2023. (under review at Operations Research)
○ D. Bertsimas, R. Cory-Wright, J. Pauphilet, and P. Petridis. A Stochastic Benders Decomposition Scheme

for Large-Scale Data-Driven Network Design. arXiv:2303.07695, 2023. (major revision at IJOC )
○ R. Cory-Wright and J. Pauphilet. Sparse PCA With Multiple Components. arXiv:2209.14790.v2, 2023.

(under review at Operations Research).
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We are currently synthesizing this thesis with the aforementioned follow-up publications and some other
papers authored by Dimitris Bertsimas and Jean Pauphilet into a book with the same name as this thesis.

Main Contributions of Thesis: Chapter-by-Chapter

We now provide an overview of each chapter and its main contributions.

Chapter 2: A Unified Approach to Mixed-Integer Optimization Problems With Logical Constraints
We consider optimization problems that unfold over two stages. In the first stage, a decision-maker activates
binary variables, while satisfying resource budget constraints and incurring activation costs. In the second
stage, the decision-maker optimizes over the continuous variables. Formally, we consider:

min
z∈Z

f(z) where f(z) := min
x∈Rn

c⊤z + g(x) + Ω(x) s.t. xi = 0 if zi = 0, ∀i ∈ [n], (1)

where Z ⊆ {0, 1}n, c ∈ Rn is a cost vector, g(·) is a generic convex function, and Ω(·) is either: (a) a big-M

penalty, Ω(x) = 0 if ∥x∥∞ ≤ M and ∞ otherwise or (b) a ridge penalty, Ω(x) =
1

2γ
∥x∥22 (one could also

consider other separable convex penalties, as discussed in Chapter 6). This problem arises in many important
applications, including facility location [8] and network design [6]. In contrast to previous approaches, we
reformulate the constraint “xi = 0 if zi = 0” in a non-linear way, by substituting zixi for xi in (1), and
invoking strong duality. This supplies a tractable reformulation of (1):

min
z∈Z

f(z) where f(z) := max
α∈Rn

c⊤z + h(α)−
n∑

i=1

ziΩ
⋆(αi), (2)

where h(α) := infv g(v)−v⊤α is, up to a sign, the Fenchel conjugate of g, and Ω⋆ is either (a) Ω⋆(β) = M |β|
under the big-M penalty or (b) Ω⋆(β) = γ

2β
2 under the ridge penalty.

This non-linear reformulation allows us to make significant progress in solving (1):
○ Reformulating f(z) as a maximization problem proves that f(z) is convex in z. Consequently, we can

minimize f(z) to provable optimality by iteratively constructing a piecewise linear outer approximation.
○ From the Boolean relaxation of the problem, we obtain valid lower approximations of f(z) to initialize

the cutting-plane algorithm, and an optimal continuous solution. We provide theoretical guarantees on
the integrality gap, the performance of a randomized rounding scheme, and propose numerically efficient
methods to solve the Boolean relaxation.

Chapter 3: A Scalable Algorithm for Sparse Portfolio Selection We provide two main contributions.
First, we propose augmenting sparse portfolio selection problems with a ridge regularization term. This yields
a more practically tractable problem for two reasons. First, the duality gap between a sparse porfolio selection
problem and its second-order cone relaxation decreases as we increase the amount of regularization and
becomes 0 with a sufficiently large but finite amount of regularization. Second, as we numerically establish
in computational experiments, the algorithms developed in this chapter converge more rapidly with more
regularization. Our second main contribution is specializing the outer-approximation method developed in the
previous chapter to sparse portfolio selection problems, and demonstrating that this allows us to solve sparse
portfolio selection problems with up to 3, 200 securities to certifiable optimality in hundreds or thousands of
seconds, one order of magnitude larger than previous attempts as summarized in the below table:

Table 2: Largest sparse portfolio instances reliably solved by each approach

Reference Solution method Largest instance size solved

Frangioni and Gentile [10] Perspective cut+SDP 400
Bonami and Lejeune [4] Nonlinear B&B 200

Gao and Li [11] Lagrangian relaxation B&B 300
Zheng et al. [16] Branch-and-Cut+SDP 400

Chapter 3 Outer approximation with ridge regularization 3, 200
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We now compare big-M and ridge regularization for a sparse portfolio selection problem on the securities
contained in the Russell 1000, with a sparsity budget of k = 5 in Figure 1. We depict the relationship between
an optimal allocation of funds x⋆ and the regularization parameter M (left) and γ (right). Qualitatively, both
parameters impact the investment profiles comparably and eventually select the same stocks. Yet, we observe
two main differences: First, setting M < 1

k renders the entire problem infeasible, while the problem remains
feasible for any γ > 0. This is a serious concern when a lower bound on M is not known. Second, the profile
for ridge regularization seems smoother than its equivalent with big-M .
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Figure 1: Optimal allocation of funds between securities as the regularization parameter (M or γ) increases.

Chapter 4: Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality We provide two main
contributions. First, we reformulate sparse PCA exactly as a mixed-integer semidefinite optimization problem;
a reformulation which is, to the best of our knowledge, novel (as of the time this chapter was first submitted
for publication). This reformulation is significant because sparse PCA is traditionally treated as a low-rank
optimization problem, which as we show in the next chapter is a harder class of problems to address. Second,
we leverage this MISDO formulation to design efficient algorithms for solving non-convex quadratic integer
problems, such as sparse PCA, to certifiable optimality or within 1 − 2% of optimality in practice at a
larger scale than existing state-of-the-art methods. A key feature of our approach is that we sidestep the
computational difficulties in solving SDOs by solving second-order cone relaxations as in [14, 1].

Chapter 5: Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank Constraints
We consider a rank-penalized rank-constrained conic optimization problem:

min
X∈Rn×m

λ · Rank(X) + ⟨C,X⟩ : AX = B,Rank(X) ≤ k,X ∈ K, (3)

where K is a proper cone, and λ, k ≥ 0 are parameters. First, we observe that the rank constraint can be
formulated in terms of a trace constraint on a projection matrix Y that spans the column space of X, i.e.,

Rank(X) ≤ k ⇐⇒ ∃Y ∈ Sn : X = Y X,Y = Y 2, tr(Y ) ≤ k. (4)

We then observe that the projection matrix Y —which satisfies Y 2 = Y —can be viewed as the matrix analog
of a binary variable which satisfies z2 = z. Letting Yk

n = {Y ∈ Sn : Y = Y 2, tr(Y ) ≤ k} denote the set of
symmetric rank-k projections on Rn×n, we obtain a mixed-projection reformulation of rank optimization:

min
Y ∈Yk

n

f(Y ) where f(Y ) = min
X∈Rn×m

λ · tr(Y ) + ⟨C,X⟩+Ω(X) : AX = B,Y X = X,X ∈ K. (5)

As in MIO, we impose a regularizer Ω to make the problem tractable. It’s either: (a) a spectral penalty,
Ω(X) = 0 if ∥X∥σ ≤ M and ∞ otherwise or (b) a Frobenius penalty, Ω(X) = ( 1

2γ )∥X∥2F . Taking the dual
of the inner maximization problem (3) then supplies a tractable reformulation of the constraint X = Y X:

min
Y ∈Yk

n

f(Y ) where f(Y ) = max
α,Π

λ · tr(Y ) + ⟨B,Π⟩ − Ω⋆(α,Y ) s.t. C −α−A⊤Π ∈ K⋆, (6)

Ryan Cory-Wright – ryancorywright.github.io 4/5



where Ω⋆—the conjugate of Ω—is linear in Y . Problem (4) allows us to make significant progress on (1):
○ Reformulating f(Y ) as a maximization problem proves f(Y ) is convex in Y . Consequently, we can

minimize (4) to provable optimality by iteratively constructing a piecewise linear lower approximation and
minimizing the approximation over Yk

n using spatial branch-and-bound.
○ We solve matrix completion problems with 10s of features to certifiable optimality, and with 100s of features

to near optimality. To our knowledge, this is the first work to solve low-rank problems to optimality.

Chapter 6: A New Perspective on Low-Rank Optimization The main contributions of this chapter are
twofold. First, we propose a general reformulation technique for obtaining high-quality relaxations of low-rank
optimization problems: introducing an orthogonal projection matrix to model a low-rank constraint, and
strengthening the formulation by taking the matrix perspective of an appropriate substructure of the problem.
Specifically, given an optimization problem of the form:

min
Y ∈Yk

n

min
X∈Sn

⟨C,X⟩+ µ · tr(Y ) + tr(f(X)) s.t. ⟨Ai,X⟩ = bi ∀i ∈ [m], X = Y X, X ∈ K, (7)

where K is a proper cone, Y ∈ Yk
n is the set of n× n orthogonal projection matrices with trace at most k:

Yk
n :=

{
Y ∈ Sn

+ : Y 2 = Y , tr(Y ) ≤ k
}
,

and we let the orthogonal projection matrix Y model the rank of X as discussed in Chapter 5. Then, since
Y is an orthogonal projection matrix, imposing the nonlinear constraint X = Y X and introducing the term
Ω(X) = tr(f(X)) in the objective is equivalent to introducing the term tr(gf (X,Y )) + (n− tr(Y ))ω(0)
in the objective, where gf is the matrix perspective of f , and thus Problem (7) is equivalent to:

min
Y ∈Yk

n

min
X∈Sn

⟨C,X⟩+ µ · tr(Y ) + tr(gf (X,Y )) + (n− tr(Y ))ω(0)

s.t. ⟨Ai,X⟩ = bi ∀i ∈ [m], X ∈ K.

Moreover, relaxing Yk
n to its convex hull Conv(Yk

n) = {Y ∈ Sn
+ : Y ⪯ I, tr(Y ) ≤ k} immediately yields

a valid semidefinite relaxation of a low-rank problem. We term this technique the “Matrix Perspective
Reformulation Technique” in recognition of the fact that we impose the rank constraint implicitly via the
domain of the matrix convex function f ’s matrix perspective function, which is defined as

gfω(X,Y ) =

{
Y

1
2 fω(Y

− 1
2XY − 1

2 )Y
1
2 if Span(X) ⊆ Span(Y ),Y ⪰ 0,

∞ otherwise,

We remark that this technique is a generalization of the perspective reformulation technique—a popular
preprocessing technique for obtaining tight relaxations of mixed-integer problems [9, 13].

Second, by applying this technique, we obtain explicit characterizations of convex hulls of low-rank sets which
frequently arise in low-rank problems. In particular, we are able to establish the following result:

Main Theoretical Contribution: Consider a matrix convex operator function f = fω, which satisfies some
mild regularity conditions (see Chapter 6), and let ω be the scalar function associated with fω. Let

T = {X ∈ Sn : tr(f(X)) + µ · Rank(X) ≤ t,Rank(X) ≤ k} (8)

be a set where t ∈ R, k ∈ N are fixed. Then, an extended formulation of the convex hull of T is given by:

T c =
{
(X,Y ) ∈ Sn × Conv(Yk

n) : tr(gf (X,Y )) + µ · tr(Y ) + (n− tr(Y ))ω(0) ≤ t
}
,

where Conv(Yk
n) = {Y ∈ Sn

+ : Y ⪯ I, tr(Y ) ≤ k} is the convex hull of trace-k projection matrices, and gf
is the matrix perspective function of f .

As the interplay between convex hulls of indicator sets and perspective functions has engineered algorithms
that outperform state-of-the-art heuristics in sparse linear regression and sparse portfolio selection (see
Chapters 2–3), we hope that this work will empower similar developments for low-rank problems.
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