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Problem I: Sparse Linear Regression
• Given data about diabetes patients
• Predict each patient’s hemoglobin measure in 1 year’s time

• To avoid overfitting: restrict complexity, impose regularization

Motivation: What do these problems have in common?

Independent variablesDependent 
variable
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Motivation: What do these problems have in common?

Decision variables/Problem data

𝛽: Sparse coefficient vector
𝑌:  n obs of 1-dimensional outputs
𝑋:  n obs of p-dimensional inputs

Sparse Linear Regression
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Explain data well on average

Restrict complexity

Regularize



Motivation: What do these problems have in common?
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Problem II: Reduced Rank regression
• Predict weekly log-returns of all securities in S&P 500
• Given factors as inputs, e.g., gas prices, supply chain bottlenecks

• To avoid overfitting: restrict complexity, impose regularization



Motivation: What do these problems have in common?

5

Reduced Rank Regression

Decision variables and Problem data

𝛽: Low-rank coefficient matrix
𝑌:  m obs of n-dimensional outputs
𝑋:  m obs of p-dimensional inputs

Explain data well on average

Restrict complexity

Regularize



Motivation: What do these problems have in common?

The literature: Very little in common. Addressed

• in different application domains- medicine vs. finance

• by different communities- integer optimization vs. statistics

• using different algorithms- branch and cut vs. alternating minimization 6

Complexity is small

Sparse Linear Regression

Decision variables/Problem data

𝛽: Sparse coefficient vector
𝑌:  n obs of 1-dimensional outputs
𝑋:  n obs of p-dimensional inputs

Reduced Rank Regression

Decision variables and Problem data

𝛽: Low-rank coefficient matrix
𝑌:  m obs of n-dimensional outputs
𝑋:  m obs of p-dimensional inputs



Parsimony rank

Modeling constraint X=YX 

Non-convex set 𝐘𝟐 = 𝐘 (Y projection matrix)

Rank(X)  k () 9Y 2 Yn : tr(Y)  k, X = YX,
<latexit sha1_base64="1G/2CuiIxR/Zbos9EhNsqPcXg10="></latexit>

To be explicit:

Overview: A Tale of Two Constraints

Sparsity Constraints

Parsimony sparsity

Modeling constraint x = zx	(x = 0 if z = 0) 

Non-convex set z" = z (z	binary)

Rank Constraints

To be explicit:

Yn := {P 2 Sn : P2 = P}
<latexit sha1_base64="9+Zasnwqs0q09qhB7wMHOSa2WvU=">AAACKXicbVDLSsNAFJ34rPUVdelmsAiuSlIFpVAounFZ0T6kSctkOmmHTiZhZiKUkN9x46+4UVDUrT9ikgaqrQcGzpxzL/fe4wSMSmUYn9rS8srq2npho7i5tb2zq+/tt6QfCkya2Ge+6DhIEkY5aSqqGOkEgiDPYaTtjK9Sv/1AhKQ+v1OTgNgeGnLqUoxUIvX1uuUhNcKIRfdxn1drVpQJjhs1YmhRDm97vApnWq8Ca7OfFRf7eskoGxngIjFzUgI5Gn391Rr4OPQIV5ghKbumESg7QkJRzEhctEJJAoTHaEi6CeXII9KOsktjeJwoA+j6InlcwUz93REhT8qJ5ySV6ZJy3kvF/7xuqNwLO6I8CBXheDrIDRlUPkxjgwMqCFZskhCEBU12hXiEBMIqCTcNwZw/eZG0KmXztFy5OSvVL/M4CuAQHIETYIJzUAfXoAGaAINH8AzewLv2pL1oH9rXtHRJy3sOwB9o3z+cZabP</latexit>
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Parsimony sparsity

Modeling constraint x = zx	(x = 0 if z = 0) 

Non-convex set z" = z (z	binary)

Applications sparse PCA, sparse portfolio selection, 

network design, unit commitment

Convex Relaxation perspective, 2x2 

convexifications,…

Parsimony rank

Modeling constraint X=YX 

Non-convex set 𝐘𝟐 = 𝐘 (Y projection matrix)

Applications rank regression, matrix completion, 

factor analysis, non-negative factorization

Convex Relaxation matrix perspective, …?

Overview: A Tale of Two Constraints

Sparsity ConstraintsRank Constraints

Main contribution of talk: Build bridge from MIO to rank constraints, 
leverage MIO marketplace of ideas to design strong low-rank relaxations

Main message from talk: Projection matrices are key ingredient to, 
for first time, develop strong lower bounds for low-rank problems
& even solve them to optimality
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Linear Regression and Relaxations Revisited

Sparse Linear Regression: Fit interpretable model using small number of features

Perspective Reformulation (Frangioni and Gentile 2006, Günlük and Linderoth 2010)-strong & scalable

Allows exact solutions with 𝑝 = 10! features (Bertsimas and van Parys 2020, Hazimeh and Mazumder 2021)

Further improvements seem possible, e.g., convexifications by Atamturk/Gomez, De Rosa/Khajavirad

Can we play same game in low-rank case?



Literature Review

Exact methods
Branch and bound: Lee and Zou (2014), Kocuk, 
Dey and Sun (2017), Bertsimas, Copenhaver and 
Mazumder (2017)
Complementarity: Bi, Pan and Sun (2020)
Sum-of-Squares: d’Aspremont (2004), Naldi (2018)

Convex relaxations
Nuclear norm: Shapiro (1982), Fazel (2002), 
Candès and Recht (2009), Recht, Fazel and Parrilo
(2010)
Log determinant: Fazel (2002)
Nuclear plus Frobenius norm: Mazumder, Hastie 
and Tibshirani (2010), Cai, Candès and Shen (2010)
Nuclear plus L1 norm: Chandrasekaran, Sanghavi, 
Parrilo and Willsky (2011), Agarwal, Negahban and 
Wainwright (2012)
Second-order cone: Kim and Kojima (2003), Lavaei
and Low (2012), Ahmadi and Majumdar (2019)

Heuristics
Rounding: Goemans and Williamson (1995), Nesterov 
(1998), Nemirovski, Roos and Terlaky (1999), So, Ye 
and Zhang (2007)
Alternating minimization: Burer and Monteiro (2003, 
2005), Jain (2013), Boumal, Voroninski and Banderia 
(2016), Waldspurger and Waters (2020)
Augmented Lagrangian: Yurtsever, Tropp, Fercoq, 
Udell and Cevher (2021)
Stochastic gradient descent: Recht and Ré (2013)
Frank-Wolfe: Freund, Grigas and Mazumder (2017)
Sketching: Tropp, Yurtsever, Udell and Cevher (2017)
Subgradient: Charisopoulos, Chen, Davis, Diaz, Ding 
and Drusvyatskiy (2021)
Non-convex penalties: Mazumder, Saldana and 
Weng (2020), Sagan and Mitchell (2021)

10

🚩🚩 🚩🚩 no clear generalization to 
reduced rank regression in literature



Summary of State of Literature
• With heuristics, obtain high-quality solutions quickly

• But-excluding special cases-no guarantees on quality 

 All known algorithms which provide exact solutions [for matrix completion] require time doubly 
exponential in the dimension n of the matrix in both theory and practice-Candès and Recht (2009)

• Translation: Completely intractable even for n=10
• Corollary: Solving low-rank matrix completion problems at all would be very impressive! 

• Moreover, “convex relaxations” don’t give valid lower bounds
• They involve replacing a rank term in the objective with a nuclear norm.

• Can we do better?
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Reduced Rank Regression: Fit interpretable model using small number of singular values

Matrix Perspective Relaxation (new): Apply Matrix Perspective Reformulation Technique

We derive relaxation as worked example halfway through talk

The following matrix perspective relaxation is a valid relaxation for reduced rank regression:

Rank Regression and Relaxations

Bertsimas, C., and Pauphilet (2021) Equation (6)Linear model



Sparsity constraints can be modeled using binary variables

Proof: Take zi = 1 if xi ≠ 0, 0 otherwise

Proof: Take Y the orthogonal projection onto the span of X

Modeling Rank with Projection Matrices

Rank constraints can be modeled using projection matrices 

where

Rank(X)  k () 9Y 2 Yn : tr(Y)  k, X = YX,
<latexit sha1_base64="1G/2CuiIxR/Zbos9EhNsqPcXg10="></latexit>

Yn := {P 2 Sn : P2 = P}
<latexit sha1_base64="9+Zasnwqs0q09qhB7wMHOSa2WvU=">AAACKXicbVDLSsNAFJ34rPUVdelmsAiuSlIFpVAounFZ0T6kSctkOmmHTiZhZiKUkN9x46+4UVDUrT9ikgaqrQcGzpxzL/fe4wSMSmUYn9rS8srq2npho7i5tb2zq+/tt6QfCkya2Ge+6DhIEkY5aSqqGOkEgiDPYaTtjK9Sv/1AhKQ+v1OTgNgeGnLqUoxUIvX1uuUhNcKIRfdxn1drVpQJjhs1YmhRDm97vApnWq8Ca7OfFRf7eskoGxngIjFzUgI5Gn391Rr4OPQIV5ghKbumESg7QkJRzEhctEJJAoTHaEi6CeXII9KOsktjeJwoA+j6InlcwUz93REhT8qJ5ySV6ZJy3kvF/7xuqNwLO6I8CBXheDrIDRlUPkxjgwMqCFZskhCEBU12hXiEBMIqCTcNwZw/eZG0KmXztFy5OSvVL/M4CuAQHIETYIJzUAfXoAGaAINH8AzewLv2pL1oH9rXtHRJy3sOwB9o3z+cZabP</latexit>
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Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank Constraints
D. Bertsimas, R. Cory-Wright, J. Pauphilet, Operations Research, 2021.
• Winner, 2020 INFORMS George Nicholson Best Paper Competition



🗺 Methodological: We propose a simple preprocessing technique which gives strong & scalable 

bounds for low-rank problems. Generalizes perspective reformulation technique from MIO

🧮 Theoretical: We invoke technique to explicitly characterize convex hulls of simple low-rank sets

💻 Algorithmic: We demonstrate technique’s efficacy across diverse range of low-rank problems

Contributions

A New Perspective on Low-Rank Optimization
D. Bertsimas, R. Cory-Wright, J. Pauphilet, minor revision at Mathematical Programming, 2022.



1. Consider low-rank problem with regularization

2. Formulate as mixed-projection optimization problem

3. Take matrix perspective of regularizer

Matrix Perspective Reformulation Technique: Recipe



Consider low-rank problem with spectral regularization

Matrix Perspective Reformulation Technique I: Regularization

Where:

•  𝜔 𝜆 = − log 𝜆 + 𝜖 	 = tr(𝑓 𝑋 )	with 𝜔 univariate convex; f matrix convex generalization of 𝜔

• Example: ridge regularization in regression
• 𝜔 𝜆 = "

#$
𝜆#, 	Ω 𝑋 = "

#$
∑%&"' 𝜆% 𝑋 # = "

#$
𝑋 (

# = "
#$
tr 𝑋)𝑋
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Low-rank problem

can be formulated as Mixed-Projection Optimization problem

 

where Y is a projection matrix

Matrix Perspective Reformulation Technique II: Formulation
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Mixed-Projection Conic Optimization problem

 

Rewrite as equivalent problem which gives stronger relaxations

where 𝑔* , matrix perspective of f (Effros, 2009; Ebadian et al., 2011), is jointly convex in X,Y!

Matrix Perspective Reformulation Technique III: Reformulation
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Captures the bilinear 
constraint β=Pβ



Mixed-Projection Conic Optimization relaxation very weak!

 

Perspectified relaxation much stronger

Matrix Perspective Reformulation Technique IV: Relaxations

28

Relax to convex hull

Eliminate

Relax to convex hull



Mixed-Projection Conic Optimization relaxation very weak!

 

Perspectified relaxation much stronger

Matrix Perspective Reformulation Technique IV: Relaxations

29

Questions on the recipe?



Matrix Perspective Reformulation: Worked Example

Reduced Rank Regression: Fit interpretable model using small number of singular values

Step 1: Consider problem with spectral regularization:

Where Ω 𝑋 = "
#$
∑%&"' 𝜆% 𝛽 # = "

#$
𝛽 (

#



Matrix Perspective Reformulation: Worked Example

Reduced Rank Regression: Fit interpretable model using small number of singular values

Step 2: Formulate as Mixed-Projection problem

Where                                            is set of 𝑛×𝑛 projection matricesYn := {P 2 Sn : P2 = P}
<latexit sha1_base64="9+Zasnwqs0q09qhB7wMHOSa2WvU=">AAACKXicbVDLSsNAFJ34rPUVdelmsAiuSlIFpVAounFZ0T6kSctkOmmHTiZhZiKUkN9x46+4UVDUrT9ikgaqrQcGzpxzL/fe4wSMSmUYn9rS8srq2npho7i5tb2zq+/tt6QfCkya2Ge+6DhIEkY5aSqqGOkEgiDPYaTtjK9Sv/1AhKQ+v1OTgNgeGnLqUoxUIvX1uuUhNcKIRfdxn1drVpQJjhs1YmhRDm97vApnWq8Ca7OfFRf7eskoGxngIjFzUgI5Gn391Rr4OPQIV5ghKbumESg7QkJRzEhctEJJAoTHaEi6CeXII9KOsktjeJwoA+j6InlcwUz93REhT8qJ5ySV6ZJy3kvF/7xuqNwLO6I8CBXheDrIDRlUPkxjgwMqCFZskhCEBU12hXiEBMIqCTcNwZw/eZG0KmXztFy5OSvVL/M4CuAQHIETYIJzUAfXoAGaAINH8AzewLv2pL1oH9rXtHRJy3sOwB9o3z+cZabP</latexit>



Matrix Perspective Reformulation: Worked Example

Reduced Rank Regression: Fit interpretable model using small number of singular values

Step 3: Reformulate by taking matrix perspective

Questions on the worked example?



Let 𝑇 denote epigraph of spectral function under rank constraints:

𝜔(⋅) scalar convex function such that                                          for matrix convex f                                

Then, extended formulation of convex hull of 𝑇 given by:

Where:
•  𝑔* matrix perspective of f
•                                        is convex hull of rank-k projection matrices.

Theoretical Contribution: Convex Hulls of Low-Rank Sets

Bertsimas, Cory-Wright, and Pauphilet (21+): Theorem 2

Matrix perspective reformulation gives convex hull of simple low-rank sets



Application: Proof SVD is Convex Opt in Lifted Space

The following “non-convex” optimization problem is exactly solvable via a top-k SVD 

Eckart-Mirsky-Young Theorem

The following two optimization problems attain the same optimal value:

Bertsimas, C., Pauphilet (2021b) pp16

Suggests that if Y*, solution to relaxation, is not proj matrix then we should round via top-k SVD



Approximate Solutions via Greedily Rounding Relaxation

Consider Y* solution to relaxation. 

If Y* already projection matrix, relaxation tight, otherwise:

1. Greedily round Y* via top-k SVD -> obtain Y 

2. Solve for X under constraint 𝑋 = 𝑌𝑋

Conclusion: If f(Y) Lipschitz continuous, greedy near optimal in theory and practice.
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Application I: Reduced Rank Regression

Formulation Portfolio Selection: Predict Weekly Log-Returns of Each Security in S&P 500
• Given many factors as inputs, e.g., gas prices, supply chain bottlenecks

• To avoid overfitting, restrict complexity of models, regularize.

Decision variables/Problem data

𝛽: Low-rank coefficient matrix
𝑌:  Matrix of outputs
𝑋:  Matrix of inputs
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Reduced Rank Regression: Fit interpretable model using small number of singular values

We refer to this relaxation as the “Matrix Perspective” relaxation

The following matrix perspective relaxation is a valid relaxation for reduced rank regression:

Reminder: Rank Regression and Relaxations

Bertsimas, C., and Pauphilet (2021) Equation (6)Linear model



An Even Stronger Relaxation

(Dong, Chen and Linderoth, 2015): In sparse linear regression, apply perspective relaxation to 
“natural” separable regularizer, plus “extra” diagonal term extracted from matrix 𝑋)𝑋. Gives 
stronger relaxations!

Saddle-Point Rank Relaxation (new): Use same approach in low-rank case

We refer to this relaxation as the “DCL” relaxation

The following matrix perspective relaxation is a valid relaxation for reduced rank regression:

Bertsimas, C., and Pauphilet (2021) Equation (7)



Application I: Reduced Rank Regression

Example:

Recover rank-10 50 x m matrix:
• Vary m, measure MSE, rank from relaxations
• Compare against nuclear norm

• Matrix perspective dominates nuclear norm
• DCL more accurate than matrix perspective or NN, recovers 

true rank

• DCL w. Mosek solves for 300x300 matrices on Macbook Pro 
in minutes, NN takes hours for 150x150.

• Code available on GitHub: 
ryancorywright/MatrixPerspectiveSoftware
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Application II: Matrix Completion

Movie Recommendation: 
• Given user movie ratings, predict ratings for unseen movies. 
• To make problem tractable, assume ratings depend on k factors 
      (lead actor, lead actress, director, genre, year, ..)

Decision variables/Problem data

Xi,j : Predicted rating movie j by user i 
Ai,j : Reported rating movie j by user i

min
X2Rn⇥p

1

2

X

(i,j)2I

(Xi,j �Ai,j)
2 s.t. Rank(X)  k.

<latexit sha1_base64="ALycNcw1Xc5FBP3y3J686hmcwTM="></latexit>

Formulation:

Available rating

Unknown rating



Application II: Matrix Completion

Example:

Recover low-rank 100x100 matrix:
• Vary rank, proportion entries sampled
• Measure % time recover matrix to 1% 

MSE (more purple=better)

• Nuclear norm by far worst approach

• New penalty better, new penalty with 
rounding much better

45

Sum of 
singular values



Application II: Matrix Completion

In practice, new penalty is viable and often more accurate

Example:

Recover low-rank 100x100 matrix:
• Vary rank, proportion entries sampled
• Measure % time recover matrix to 1% 

MSE (more purple=better)

• Nuclear norm by far worst approach

• New penalty better, new penalty with 
rounding much better

• Code available on GitHub 
ryancorywright/MixedProjectionSoftware
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Avg MSE: 0.147 Avg MSE: 0.054

Avg MSE: 0.161 Avg MSE: 0.181



Two future directions:

1. Writing a book                  Integer and Matrix Optimization: A Nonlinear Approach

2. Branch-and-bound.          perspective relax eventually lead to B&B which solves 
sparse regression at scale. Similar approach for matrix completion in progress

Conclusion
Matrix perspective is natural generalization of perspective reformulation

• Exploit separability of eigenvalues to obtain “embarrassingly tight” formulation.

• Leads to relaxations which outperform state-of-the-art for central problems in OR/ML.

• Suggests this is a very general story, often useful to think about problems this way.

Thank you for listening! 
Lingering questions? 

Email r.cory-
wright@imperial.ac.uk

sparsity rank
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What does MPCO (not) generalize from MIO?
MIO captures notions of 

• Finiteness: 𝑧 ∈ {0, 1}

• Algebraicity: 𝑧" − 𝑧 = 0

While MPCO captures notions of algebraicity (𝑌" = 𝑌) but NOT finiteness-uncountably infinitely many Y

Therefore [what follows is conjecture]

• Results from MIO which depend on algebraic arguments (perspective reformulation, taking convex hulls)

• Or where enumeration argument can be replaced with coverage argument (branch-and-bound/cut)

Generalize from MIO. But.. 

• Results in MIO which depend on discreteness (e.g., MIR cuts) probably do not

Therefore, QCQP cuts (split cuts, PSD cuts) can be used by MPCO, but MIO cuts (Knapsack/flow cover) cannot

Remark: determining whether MIO result due to finiteness is non-trivial
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