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• Date: 19 April 2024 (all day)
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What is Low-Rank Matrix Completion?

Movie Recommendation 
• Given user movie ratings, predict ratings for unseen movies. 
• To make tractable, assume ratings depend on k factors 
      (lead actor, lead actress, director, year, ..)

Decision variables/Problem data

Xi,j : Predicted rating movie j by user i 
Ai,j : Reported rating movie j by user i

Formulation:

Available rating

Unknown rating

Explain data well on average

Restrict complexityRegularize



Why Solve Low-Rank Matrix Completion to Optimality? 
Three Reasons

• Statistical Data regimes where global methods recover ground truth, polynomial time methods don’t

• Work by David Gamarnik’s group (MIT Sloan) on Overlap Gap Property

• Reliability In high-stakes applications, important to make best imputations-And know best possible

• Performance out-of-sample Solving training problem to optimality improves test-set performance

• Prior attempt that scaled to ~n=30: 0.6% MSE improvement on test set from certifiable optimality vs. AM



How do we Get There? A Tale of Two Problems
Low-Rank Matrix Completion

Not mixed-integer representable (Lubin et al. 2022), no methods solve it to optimality for k>1

“When you aren’t sure what to do next, start with what you know and build from there” - Dimitris

Sparse Linear Regression

NP-hard, considered intractable 5-10 years ago

Often solved to optimality for 𝑝 = 10! features (Bertsimas and Van Parys, Hazimeh/Mazumder/Saab)

Explain data well on average
Restrict complexity

Regularize

Explain data well on average
Restrict complexityRegularize



Hazimeh, Mazumder & Saab (2022) propose custom branch and bound strategy that scales to 𝑝 = 10!. 
Four key ingredients:

1. Strong Root Node Relaxation—leverage perspective relaxation (Frangioni and Gentile 2006)

2. Efficient Branching Strategy—strong branching

3. High-Quality Incumbent Solutions—cyclic coordinate descent via L0Learn package

4. Efficient Nodal Subproblem Strategy
• Solve nodal relaxations via first-order method on dual, warm-started from parent node

With these ingredients, B&B usually scales

Why Does Branch-and-Bound Scale for Sparse Regression?
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Agenda for Today
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Use ideas from sparse regression (e.g. Hazimeh/Mazumder/Saab) as roadmap
Solve low-rank matrix completion to optimality for n~=150, k~=5 using ideas from MINLP

1. Strong Root Node Relaxation—leverage matrix perspective relaxation (Bertsimas et al. 2023)

2. Efficient Branching Strategy—eigenvector disjunctions (like in Saxena/Bonami/Lee 2010)

3. High-Quality Incumbent—alternating minimization with relaxation induced neighborhood search

4. Numerical Benchmarking, Comparison With Literature

Remark: Roadblock to n>150 is the scalability of semidefinite solvers



Related Work*
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Exact methods for related problems
MIQCP: Saxena, Bonami and Lee (2010)
Sparse Plus Low-Rank: Lee and Zou (2014) 
ACOPF: Kocuk, Dey and Sun (2017)
Factor Analysis: Bertsimas, Copenhaver and 
Mazumder (2017)
Binary Matrices/Tensors: Kovács, Günlük and Hauser 
(2021), Soni, Linderoth, Luedtke and Pimentel-Alarcón
(2023), Del Pia and Khajavirad (2023)
Trust Region: Anstreicher (2022)

Convex relaxations
Nuclear norm: Shapiro (1982), Fazel (2002), Candès
and Recht (2009), Recht, Fazel and Parrilo (2010)
Log determinant: Fazel (2002)
Matrix perspective: Bertsimas, Cory-Wright and 
Pauphilet (2022, 23)
Perm-Invariant: Kim, Tawarmalani and Richard (2023)
Dantzig-Wolfe: Li and Xie (2022, 23)

Characterizing when relaxations tight
SOC/SDP relaxations: Barvinok (1995), Pataki (1998), 
Kim and Kojima (2003), Lavaei and Low (2012), Burer 
and Ye (2019), Wang and KIlInç-Karzan (2022, 23)
SOS relaxations: Goveia, Parrilo and Thomas (2010), 
Josz and Molzahn (2018), Barak and Moitra (2022)

Heuristics
Alternating minimization: Burer and Monteiro (2003, 
2005), Jain (2013), Waldspurger and Waters (2020)
Stochastic gradient descent: Recht and Ré (2013)
Frank-Wolfe: Freund, Grigas and Mazumder (2017)
Subgradient: Charisopoulos, Chen, Davis, Diaz, Ding 
and Drusvyatskiy (2021)
Non-convex penalties: Mazumder, Saldana and 
Weng (2020), Sagan and Mitchell (2021)

* With sincerest apologies if I missed one of your papers!
   Very broad literature



My Take on Related Work
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• With heuristics, usually obtain high-quality solutions quickly

• Burer-Monteiro alternating minimization usually performs remarkably well!

• But no guarantees on heuristic quality

• Local methods sometimes 50% or more suboptimal; can’t know if this happens without a certificate

• No generically applicable certifiably optimal methods that scale to k>1, n>30

• If lots of problem structure (e.g., binaries, factor analysis), can solve to optimality by exploiting structure
• Today: We propose method that applies to any low-rank problem, solve matrix completion to optimality



What do Rank Constraints Look Like?

Can be highly non-convex

Left: 3D elliptope Right: slice of Hankel matrix
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Part I: A Strong Root Node Relaxation

A New Perspective on Low-Rank Optimization
D. Bertsimas, R. Cory-Wright, J. Pauphilet, Mathematical Programming, 2023.



Original formulation:

This like trying to solve a sparse regression problem without using binary variables

Mixed-Projection reformulation:

Matrix Completion as a Mixed-Projection Problem
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min
Y2Yk

n

min
X2Rn⇥m

� · tr(Y) + hC,Xi s.t. AX = B, X = YX, X 2 K.
<latexit sha1_base64="x4MmgLbn9Liqmj1A01ft2L/YQF0="></latexit>

Rank(X)  k () 9Y 2 Yn : tr(Y)  k, X = YX,
<latexit sha1_base64="1G/2CuiIxR/Zbos9EhNsqPcXg10="></latexit>

Rank constraints can be modeled using projection matrices 

where

Rank(X)  k () 9Y 2 Yn : tr(Y)  k, X = YX,
<latexit sha1_base64="1G/2CuiIxR/Zbos9EhNsqPcXg10="></latexit>

Yn := {P 2 Sn : P2 = P}
<latexit sha1_base64="9+Zasnwqs0q09qhB7wMHOSa2WvU=">AAACKXicbVDLSsNAFJ34rPUVdelmsAiuSlIFpVAounFZ0T6kSctkOmmHTiZhZiKUkN9x46+4UVDUrT9ikgaqrQcGzpxzL/fe4wSMSmUYn9rS8srq2npho7i5tb2zq+/tt6QfCkya2Ge+6DhIEkY5aSqqGOkEgiDPYaTtjK9Sv/1AhKQ+v1OTgNgeGnLqUoxUIvX1uuUhNcKIRfdxn1drVpQJjhs1YmhRDm97vApnWq8Ca7OfFRf7eskoGxngIjFzUgI5Gn391Rr4OPQIV5ghKbumESg7QkJRzEhctEJJAoTHaEi6CeXII9KOsktjeJwoA+j6InlcwUz93REhT8qJ5ySV6ZJy3kvF/7xuqNwLO6I8CBXheDrIDRlUPkxjgwMqCFZskhCEBU12hXiEBMIqCTcNwZw/eZG0KmXztFy5OSvVL/M4CuAQHIETYIJzUAfXoAGaAINH8AzewLv2pL1oH9rXtHRJy3sOwB9o3z+cZabP</latexit>

Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank Constraints
D. Bertsimas, R. Cory-Wright, J. Pauphilet, Operations Research, 2022.
Matrix Analog of Binary Variables

Matrix Analog of Logical Constraint



A Matrix Perspective Reformulation
Theorem: Can rewrite low-rank matrix completion w.l.o.g. as: 

 

Proof : 𝑋 "
# = 𝑡𝑟 𝑋$𝑋 	𝑠. 𝑡. 𝑋 = 𝑌𝑋 trace of matrix convex 𝑓 𝑋 = 𝑋$𝑋 under projection constraint

Replace 𝑓 with matrix perspective 𝑔% w.l.o.g.

𝑔%	jointly convex in (X,Y) by construction

gf! (�,P ) =

8
<

:
P

1
2 f!

✓
P� 1

2�P� 1
2

◆
P

1
2 if Span(�) ✓ Span(P )

1 otherwise
<latexit sha1_base64="smzs3+ufT7xiq2hubEqXoHskQ0U=">AAADJHicdVLLbhMxFPUMr1IeTWHJxiICJQKiTECCDVIFG5ZBkLZSJkQe587E6tge7DtAZPkn+Ai+gS2s2SEWbJD4E5xHS9PHlSwd3Xt8z31lVSksdru/o/jCxUuXr2xc3bx2/cbNrcb2rV2ra8NhwHWpzX7GLJRCwQAFlrBfGWAyK2EvO3g5j+99AGOFVm9xVsFIskKJXHCGwTXejh4UY5ePUy2hYL6VZtKlGSDzD+kc9z1t0+cBQiGU40HI+lXgnUsxN4y7xLue9/QwSVpCjq0j0qN11n+BcxlGFFNsn6Nyn6Yy058cFTkNXF2BYaiNYhLcm4opT4/1EJLYOrOA8P4samsp0U5TmgqV4+wou8YpmI/CQpAANTlsfNxodjvdhdHTIFmBJllZf9z4m040ryUo5CWzdph0Kxw5ZlDwEvxmWluoGD9gBQwDnJdmR26xVU/vBc+E5tqEp5AuvMd/OCatncksMCXDqT0ZmzvPig1rzJ+NnFBVjaD4UiivS4qazk+EToQBjuUsAMaNCLVSPmVhCRgOaU0lkz7MJDk5gdNgt9dJHnd6r580d16sprNB7pC7pEUS8pTskFekTwaER5+jr9G36Hv8Jf4R/4x/LalxtPpzm6xZ/OcfMGoF/g==</latexit>

Captures bilinear 
constraint β=Pβ



Apply matrix perspective reformulation technique to matrix completion, obtain:

A Strong Root Node Relaxation

Non-convexity: Just relax!
Impose rank constraint implicitly
via domain of Schur complement



Our Matrix Completion Formulation:

where                                                                       is semidefinite representable.

Generalizes the perspective relaxation, and often very tight—just like the perspective relaxation!

A Strong Root Node Relaxation



Part II: An Efficient Branching Strategy



Improving the Root Node Relaxation: Eigenvector Branching
Suppose we solve relaxation, get (X*, Y*). If Y* has binary eigenvalues, done 

Otherwise, want to separate Y* from           .. Hard to do in original space, so lift!

Introduce new 𝑛	×𝑘 matrix U, ideally, 𝑌 = 𝑈𝑈$, 𝑈$𝑈 = 𝐼. New (equivalent) relaxation:



Improving the Root Node Relaxation: Eigenvector Branching
Given relaxation

Want solution where 4𝑌 ≼ 6𝑈6𝑈&, then 4𝑌 = 6𝑈6𝑈& 	and we are done. Suppose not. 

Separation oracle x: 

Impose 2'-term disjunction

Theorem: Disjunction Separates 4𝑌 from            ➡ regions for branch-and-bound



Eigenvector Branching, Visualized
Would like to model expression 

    𝑥$𝑌	𝑥 ≤ 𝑈$𝑥 #
#.

Requires piecewise linear overestimator of 𝑈($𝑥
#
 on [-1, 1]

Therefore use 𝜃 = 6𝑈($𝑥 as breakpoint, refine PWL upper approx.

Aim: develop good approximation of 𝑈($𝑥
#
 near optimal solution,

without too many breakpoints



We Can Also Use Multiple Breakpoints
Branching factor becomes (no. pieces)^k

• Trade-off between strength of disjunction and no. nodes that need expanding

• 4 pieces better than 2 pieces for small n; breaks symmetry

• 2 pieces about as good as 4 pieces as n increases



McCormick doesn’t improve on root node without multiple partitions!

• Theoretically disjuncting on only one 𝑈(,* in each column j cannot improve root relaxation, no matter 
how many regions we partition [-1, 1] into!

• Practically McCormick routinely fails to improve root relaxation after expanding millions of nodes

Why Not McCormick Regions?



Part III: A Branch-and-bound Scheme



• Warm-start via Burer-Monteiro (BM) method at root node. 𝑋 = 𝑈	𝑉$, 𝑈 ∈ 𝑅+	×' , 𝑉 ∈ 𝑅+	×'

  Iteratively solve

• Incumbent generation by Relaxation-Induced Neighborhood Search-type BM at “promising” leaf 
nodes

 

Incumbent Generation



• Root node: Matrix perspective relaxation (Bertsimas et al. 2023)

• Branching: Eigenvector disjunctions (Saxena et al. 2010)

• Incumbent: Burer-Monteiro (BM) at root node, RINS-BM at “promising” leaf nodes

• Node expansion: Solve SDPs using Mosek

Algorithm implemented in Julia. Code available:    github.com/sean-lo/OptimalMatrixCompletion.jl

Overall Branch-and-Bound Scheme



A New Semidefinite Relaxation



Improving Our Relaxation
• Useful Fact If a matrix is rank-k, all (k+1) x (k+1) minors have determinant zero

• In particular, if matrix rank-1, all 2x2 minors have determinant zero

• Therefore, take Shor relaxation of (vectorized) 2x2 minor, and obtain: 

Closes most of gap between matrix perspective relaxation and optimal solution!



Part IV: Numerical Results



Experiment I: Justifying Algorithmic Design Decisions

Problem Setting

Recover low-rank nxn rank-1 matrix
• Generate synthetic nxn rank-1 matrices 
• Inject small amount of i.i.d. noise
• Sample 𝑝 = 2𝑛	log	𝑛 entries at random
• Vary n, branch-and-bound strategy
• Measure average relative optimality gap 

after one hour, over 20 instances
• Terminate early if gap of 10^-4
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Eigenvector disjunctions improve relative gap by order of magnitude
Alternating minimization exhibits similar improvement
Best-first search better than breadth-first or depth-first search



Experiment I: Justifying Algorithmic Design Decisions

Aside: 

• Commercial non-convex solvers typically use 
McCormick relaxations (spatial branching), not 
eigenvector disjunctions

• Our results+related results in Anstreicher (2022) 
suggest commercial solvers may benefit from 
eigenvector disjunctions when solving non-
convex (MI)QCPs

• Please implement this 😀
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Eigenvector disjunctions improve relative gap by order of magnitude
Alternating minimization exhibits similar improvement
Best-first search better than breadth-first or depth-first search



Experiment II: Scalability

Problem Setting

Recover low-rank n×n rank-k matrix
• Using best method in Experiment I
• Sample 𝑝 = 2𝑛𝑘	log	𝑛 entries at random
• Vary n, k
• Measure average optimality gap at root 

node, after one hour over 50 instances
• Measure average MSE improvement 

compared to Burer-Monteiro

Surprisingly large MSE improvement from branch-and-bound!
Although edge decreases as n,k increases. 
• many local minima and branch-and-bound needed when n,k small 
• but few local minima, existing methods work well when n,k large



Do Local Methods Solve Matrix Completion to Optimality?
Many Positive Results in Literature

Literature says: Given *enough* data, Burer-Monteiro solves low-rank matrix completion to optimality! 🎉
• BM is very fast! So, if assumptions on *enough* data hold, you should use it

But… Assumptions on *enough* data may not hold! ⚠
• Our results add: When they don’t, there are often many local optima, and global methods are needed



Why Do Exact Methods Perform Better?
The Literature Does Not Rule Out The Possibility of an “Overlap Gap”

No. obs of n 
x n matrix

nr	𝐥𝐨𝐠𝒏
Candes, Recht (2009)
No method can succeed
(exhaustive search fails) 

𝒏𝟓/𝟒𝒓	𝒍𝒐𝒈	𝒏

Candes, Recht (2009)
Nuclear Norm Relaxation Succeeds

Previous slide confirms empirically: 
branch-and-bound better in practice 



Experiment III: Comparison of Convex Relaxations

Recover low-rank nxn rank-1 matrix
• Vary n in 10, 20, 30, …, 75, 100

• Impose described Shor constraints on a 
subset of determinant minors, 
depending on no. observed entries

• Imposing M_4 and M_3 minors reduces 
optimality gap by 1-2 orders of 
magnitude, depending on problem 
setting



Parsimony rank

Modeling constraint X=YX 

Non-convex set 𝐘𝟐 = 𝐘 (Y projection matrix)

Root node matrix perspective relaxation

Branching eigenvectors

Incumbent alternating minimization

Summary: A Tale of Two Problems

Sparse Linear Regression

Parsimony sparsity

Modeling constraint x = zx	(x = 0 if z = 0) 

Non-convex set z" = z (z	binary)

Root node perspective relaxation

Branching 0-1 (strong)

Incumbent coordinate descent

Low-Rank Matrix Completion
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Main contribution of talk: Build bridge from MIO to rank constraints, leverage 
MIO marketplace of ideas to solve low-rank matrix completion via branch-and-bound
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Experiment I: Backup-Average Runtime

Problem Setting

Recover low-rank nxn rank-1 matrix:
• Generate synthetic nxn rank-1 matrices 
• Inject small amount of i.i.d. noise
• Sample 𝑝 = 2𝑛	log	𝑛 entries at random
• Vary n, branch-and-bound strategy
• Measure average relative optimality gap 

after one hour
• Terminate early if gap of 10^-4
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Eigenvector disjunctions improve relative gap by order of magnitude
Alternating minimization exhibits similar improvement
Best-first search better than breadth-first or depth-first search



What does MPCO (not) generalize from MIO?
MIO captures notions of 

• Finiteness: 𝑧 ∈ {0, 1}

• Algebraicity: 𝑧" − 𝑧 = 0

While MPCO captures notions of algebraicity (𝑌" = 𝑌) but NOT finiteness-uncountably infinitely many Y

Therefore [what follows is conjecture]

• Results from MIO which depend on algebraic arguments (perspective reformulation, taking convex hulls)

• Or where enumeration argument can be replaced with coverage argument (branch-and-bound/cut)

Generalize from MIO. But.. 

• Results in MIO which depend on discreteness (e.g., MIR cuts) probably do not

Therefore, QCQP cuts (split cuts, PSD cuts) can be used by MPCO, but MIO cuts (Knapsack/flow cover) cannot

Remark: determining whether MIO result due to finiteness is non-trivial
40


