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l What is Low-Rank Matrix Completion?

Formulation: Movie Recommendation
 Given user movie ratings, predict ratings for unseen movies.

Explain data well on average ~ * To make tractable, assume ratings depend on k factors

1 1 : (lead actor, lead actress, director, year, ..)
5 2
min - —|[ X[+ E : (P T) | |

X eRnXxm 2’7 2 = Movies User features Movies ®
! (Z,])EI g
Regularize Restrict complexity s
s.t. Rank(X)<k — o
R 5
p=

w wn

7 — 3

- -

Decision variables/Problem data

A

Unknown rating

X;;: Predicted rating movie j by user i
A;;: Reported rating movie j by user i < Available rating




| Why Solve Low-Rank Matrix Completion to Optimality?
Three Reasons

* Statistical Data regimes where global methods recover ground truth, polynomial time methods don't

* Work by David Gamarnik’s group (MIT Sloan) on Overlap Gap Property
* Reliability In high-stakes applications, important to make best imputations-And know best possible
+ Performance out-of-sample Solving training problem to optimality improves test-set performance

*  Prior attempt that scaled to ~n=30: 0.6% MSE improvement on test set from certifiable optimality vs. AM



How do we Get There? A Tale of Two Problems

Low-Rank Matrix Completion Explain data well on average
1 1 Restrict complexity
min  —|| X% += X, ;—A;)? st. Rank(X)<k—
Jmin Xy Y (K- Ay) (X) <

Regularize
Not mixed-integer representable (Lubin et al. 2022), no methods solve it to optimality for k>1

“When you aren’t sure what to do next, start with what you know and build from there” - Dimitris

Explain data well on average

Sparse Linear Regression Regularize Restrict complexity

wERP

1 1
min -y - Xwl||2+ guwa% + pllwllo

NP-hard, considered intractable 5-10 years ago

Often solved to optimality for p = 10° features (Bertsimas and Van Parys, Hazimeh/Mazumder/Saab)



I Why Does Branch-and-Bound Scale for Sparse Regression?

Hazimeh, Mazumder & Saab (2022) propose custom branch and bound strategy that scales to p = 10°.
Four key ingredients:

1. Strong Root Node Relaxation—leverage perspective relaxation (Frangioni and Gentile 2006)

1 2 1 T T 2
min —l|ly— Xw|5+—e p+u-e z st. zjp;>w; Vielp.
w0, pERP 20,1} 2n||y 5 2 p T K iPi = W ]
2. Efficient Branching Strategy—strong branching T AWy
supE s

EASY

Branch-and-bound solver

3. High-Quality Incumbent Solutions—cyclic coordinate descent via LOLearn package

4. Efficient Nodal Subproblem Strategy

+  Solve nodal relaxations via first-order method on dual, warm-started from parent node

With these ingredients, B&B usually scales




Agenda for Today

Use ideas from sparse regression (e.g. Hazimeh/Mazumder/Saab) as roadmap
Solve low-rank matrix completion to optimality for n~=150, k~=5 using ideas from MINLP

1. Strong Root Node Relaxation—leverage matrix perspective relaxation (Bertsimas et al. 2023)

2. Efficient Branching Strategy—eigenvector disjunctions (like in Saxena/Bonami/Lee 2010)

3. High-Quality Incumbent—alternating minimization with relaxation induced neighborhood search

4. Numerical Benchmarking, Comparison With Literature

Remark: Roadblock to n>150 is the scalability of semidefinite solvers



Related Work*

Exact methods for related problems

MIQCP: Saxena, Bonami and Lee (2010)

Sparse Plus Low-Rank: Lee and Zou (2014)

ACOPF: Kocuk, Dey and Sun (2017)

Factor Analysis: Bertsimas, Copenhaver and
Mazumder (2017)

Binary Matrices/Tensors: Kovéacs, Gunlik and Hauser
(2021), Soni, Linderoth, Luedtke and Pimentel-Alarcén
(2023), Del Pia and Khajavirad (2023)

Trust Region: Anstreicher (2022)

Convex relaxations

Nuclear norm: Shapiro (1982), Fazel (2002), Candés
and Recht (2009), Recht, Fazel and Parrilo (2010)

Log determinant: Fazel (2002)

Matrix perspective: Bertsimas, Cory-Wright and
Pauphilet (2022, 23)

Perm-Invariant: Kim, Tawarmalani and Richard (2023)
Dantzig-Wolfe: Li and Xie (2022, 23)

* With sincerest apologies if | missed one of your papers!
Very broad literature

Characterizing when relaxations tight
SOC/SDP relaxations: Barvinok (1995), Pataki (1998),
Kim and Kojima (2003), Lavaei and Low (2012), Burer
and Ye (2019), Wang and Klling-Karzan (2022, 23)
SOS relaxations: Goveia, Parrilo and Thomas (2010),
Josz and Molzahn (2018), Barak and Moitra (2022)

Heuristics

Alternating minimization: Burer and Monteiro (2003,
2005), Jain (2013), Waldspurger and Waters (2020)
Stochastic gradient descent: Recht and Ré (2013)
Frank-Wolfe: Freund, Grigas and Mazumder (2017)
Subgradient: Charisopoulos, Chen, Davis, Diaz, Ding
and Drusvyatskiy (2021)

Non-convex penalties: Mazumder, Saldana and
Weng (2020), Sagan and Mitchell (2021)



My Take on Related Work

*  With heuristics, usually obtain high-quality solutions quickly

* Burer-Monteiro alternating minimization usually performs remarkably well!

* But no guarantees on heuristic quality

* Local methods sometimes 50% or more suboptimal; cant know if this happens without a certificate

* No generically applicable certifiably optimal methods that scale to k>1, n>30

* If lots of problem structure (e.g., binaries, factor analysis), can solve to optimality by exploiting structure
« Today: We propose method that applies to any low-rank problem, solve matrix completion to optimality



What do Rank Constraints Look Like?

Can be highly non-convex

lzy
Rank |z 1z | =1
y 2z 1

Left: 3D elliptope

x Yy 2
Rank |y 2z 1—-2]| =1
z1l—x1—y

Right: slice of Hankel matrix
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Part |: A Strong Root Node Relaxation

A New Perspective on Low-Rank Optimization
D. Bertsimas, R. Cory-Wright, J. Pauphilet, Mathematical Programming, 2023.



Matrix Completion as a Mixed-Projection Problem

Original formulation:

. 1 1
min g”X”%W Y (Xi;—Aiy)? st. Rank(X)<k

XGRnXm.
(2,5)€ET

This like trying to solve a sparse regression problem without using binary variables

Rank constraints can be modeled using projection matrices
Rank(X) <k <= JdY € ), : tr(Y) <k, X =YX
where Y, :={P € S":P? =P}

Matrix Analog of Logical Constraint

Mixed-Projection reformulation:

. . 1 9 1 2
nin, S0 27||X||F—|— > E (X, —A; ;)" st tr(Y) <k, X=[YX
" (¢,5)€T
_ I

I%Ig(@(cJA—rI;r%eg {gn CO\I7IC Q’te)tlmlzatlon: A New Paradigm for Modeling Rank Constraints

" Bertsimds, R. Cory-Wright, J. Pauphilet, Operations Research, 2022. 12




Simple
RECIPES
A Matrix Perspective Reformulation ~

Theorem: Can rewrite low-rank matrix completion w.l.0.g. as:

p ITLIIL =L (6) i (XZJ B AZ?J) ¥ . sy :*‘ ) /
Yeyk Xermxm, Oesm 2y (i) €T vd. T
S.t. YT X >_ 0 Strona Relaxations for Low-Rank“'

X 0O/

Proof : ||X||12: =tr(X'X) s.t.X = YX trace of matrix convex f(X) = XX under projection constraint

Replace f with matrix perspective g¢ w.l.0.g.
1 1 1
P2f, (P_ﬁ,BP_i) P

00 otherwise

N =

if‘Span(,@) C Span(P)‘ Captures bilinear

constraint B=Pf

gr., (B, P) =

gy jointly convex in (X,Y) by construction



A Strong Root Node Relaxation

Apply matrix perspective reformulation technique to matrix completion, obtain:

Y X
min min —tr ) + > (Xiy—Aiy) st (XT @> ~ 0

YeYk XeRnxm @esm 2 (i])eT

Impose rank constraint implicitly

- ity | , i
Non-convexity: Just relax! via domain of Schur complement



A Strong Root Node Relaxation

Our Matrix Completion Formulation:

Y X
min min —tr )+ Z Z])2 S <XT @> ~ 0

Y €Conv(Yf) XER™X™, ©€S™ (i,§)€Z

where Conv (Y*)={PecS":0<P <1, tr(P)<k} issemidefinite representable.

Generalizes the perspective relaxation, and often very tight—just like the perspective relaxation!



Part Il: An Efficient Branching Strategy



Improving the Root Node Relaxation: Eigenvector Branching
Suppose we solve relaxation, get (X*, Y*). If Y* has binary eigenvalues, done
Otherwise, want to separate Y* from Y €Yk . Hard to do in original space, so lift!

Introduce new n xk matrix U, ideally, Y = UUT,UTU = I. New (equivalent) relaxation:

1 Y X
min min =~ —tr(©) + Ko — A P mit, ~0. Y >-UUT
Ucrnxk ~ ©es™ &



Improving the Root Node Relaxation: Eigenvector Branching

. . 1 Y X
Given relaxation e T 2—tr (©)+ Z (Xij— Az‘,j)2 St T -0, Y-UU"
Y eConv(Y;)) XEannm i1 (G.5)eT X' ©®

Want solution where ¥ < UUT, then Y = UUT and we are done. Suppose not.
Separation oracle x: a:T(U_lA]T — Y)w <0y lle|la=1

Impose 2*-term disjunction

i Ulz c[-1,U] z| VjelL, i
U].Ta: = (lAija:, 1] Vjelkl\L,
\/ ! (U,Y) ' Yx < Z (:BTUjﬁ]Tac LB (o Uj)T:I;) >
LC[K] ok . "
+ Y (:I;TUjUjT:L' + (U, - U])Tm)
1 JE[RI\L 5

Theorem: Disjunction Separates ¥ from Y €Y% &d regions for branch-and-bound



Eigenvector Branching, Visualized

Would like to model expression
2
xTY x < ||UTx||2.

. . T . 2
Requires piecewise linear overestimator of (U x)" on [-1, 1]

Therefore use 6 = U] x as breakpoint, refine PWL upper approx.

. N 2 . .
Aim: develop good approximation of (U x)" near optimal solution,
without too many breakpoints




We Can Also Use Multiple Breakpoints

Branching factor becomes (no. pieces)k

2F regions 3F regions 4F regions

1) 1) i — U o0 U

 Trade-off between strength of disjunction and no. nodes that need expanding
4 pieces better than 2 pieces for small n; breaks symmetry

* 2 pieces about as good as 4 pieces as n increases



Why Not McCormick Regions?

McCormick doesn’t improve on root node without multiple partitions!

. . 1
min min —tr (@) + g(X)
YeConv(YF), XeRm*m @ecsm 27

UER"Xk,VGRnXka
Y X .

D Vi =1V ekl Y Vis s =0V 1,52 € [k]: G #5,
i=1 =1

- - Vi€ [n],
(Vz}jhjza Ui,jlv Ui,jz) € M(ngl ) Ui,jzagz',jz’ U'i,j2)a o
\VI J1sJ2 € [k]
* Theoretically disjuncting on only one U; ; in each column j cannot improve root relaxation, no matter

how many regions we partition [-1, 1] into!

* Practically McCormick routinely fails to improve root relaxation after expanding millions of nodes



Part Ill: A Branch-and-bound Scheme



Incumbent Generation

« Warm-start via Burer-Monteiro (BM) method at root node. X =UVT,U € R" XK,V € R %k

. 1 " 2 1 A
toratively sojve VT =ammin 5 30 (V)= Ai) + o [0V
eratively solve Verkxm & 52 8

A 1 e ‘L Loy
U't' =argmin = Z ((th+l)i,j_A'isj> +ﬂ||UVt+l||i‘

Uernxk £ (ij)ez

* Incumbent generation by Relaxation-Induced Neighborhood Search-type BM at “promising” leaf

nodes
Math. Program., Ser. A 102: 71-90 (2005)

Digital Object Identifier (DOI) 10.1007/s10107-004-0518-7

Emilie Danna - Edward Rothberg - Claude Le Pape

Exploring relaxation induced neighborhoods
to improve MIP solutions



Overall Branch-and-Bound Scheme

Root node: Matrix perspective relaxatlon (Bertsimas et al. 2023)

Y X
min min —tr ) + Z A; )’ s.t. (XT (_)) =0

Y €Conv(Yf) XER™X™, OS™ (i,4)€Z

Branching: Eigenvector disjunctions (Saxena et al. 2010)

Incumbent: Burer-Monteiro (BM) at root node, RINS-BM at “promising” leaf nodes
* Node expansion: Solve SDPs using Mosek

Algorithm implemented in Julia. Code available: € github.com/sean-lo/OptimalMatrixCompletion. ]|




A New Semidefinite Relaxation



Improving Our Relaxation

e Useful Fact If a matrix is rank-k, all (k+1) x (k+1) minors have determinant zero
* In particular, if matrix rank-1, all 2x2 minors have determinant zero

« Therefore, take Shor relaxation of (vectorized) 2x2 minor, and obtain:

, 1 1 )
X,Wné}R%‘X"‘, %tr(@) —+ 5 Z (Ai,j — 2X7;’in,j + Wi’j) (5&)
YEConv(yrlL), (1.5)€T

@cs™,V
Y X
s.t. (XT @) >~ 0, (5b)
1 Xilyjl A].X’Ll ,j2 X712 ;jl 3 XiZ,jQ
Xisjn Wi ja Vil,(jl,j2) V(il,iz),jl V(il,iz),(jl,jz) Vi <ig € [n]
X; vi oo Wi, i, V3 |7 N - ' (5¢)
1,J2 ga(h,]z) 3 ] (1,92),(d1,52) ({'1,12);32 - le < j2 c [m]
Xi2’j1 ;/(il,iz),jl Vv(il,ziz)a(jl,b) ‘;Vh’jl ‘/732,(J'1,j2) ’
Kizgs Viiria)(ga)  Virsia)sio Via (1.2 Wia js
@jl,j2 = Z V;T(jl,h) Y jl < jz € [m], @j,j = Z Wi,j, V] € [m] (5d)
i€[n] i€[n]

Closes most of gap between matrix perspective relaxation and optimal solution!



Part IV: Numerical Results



Experiment I: Justifying Algorithmic Design Decisions

Problem Setting

Recover low-rank nxn rank-1 matrix

Generate synthetic nxn rank-1 matrices
Inject small amount of i.i.d. noise
Sample p = 2nlogn entries at random
Vary n, branch-and-bound strategy
Measure average relative optimality gap
after one hour, over 20 instances
Terminate early if gap of 10/-4

With McCormick disjunctions

With eigenvector disjunctions

nﬁtlel:lr::;ll:ogn Best-first Breadth-first Depth-first Best-first Breadth-first Depth-first
10 X 237x1072 3.06x1072 5.02x10"2 528x10~2 1.10x10"2 2.60x 102
10 v/ 320x107¢ 490x107¢ 7.92x107° 293x10°* 491x107* 522x10°°
20 X 478 x 1072 4.78x10~2 4.78x10~2 261x10~¢ 4.03x10~¢ 4.03x10°3
20 o 551x107¢ 801x107% 801x107% 132x107% 192x107% 6.37x107¢
30 X 1.77x1072 1.77x1072 1.77x1072 2.00x10"% 4.16x10"% 1.35x102
30 v/ 201x107% 313x107% 3.13x10°° 282x107% 453x107% 198x10°°
40 X 1.32x10~% 1.32x10~° 132x10~2 328x10°¢% 7.12x107¢% 6.11x10°¢
40 v/ 1.12x10¢ 1.12x10¢ 1.12x10¢ 157x105% 1.94x10°5 825x10°5
50 X 6.18x107% 6.18x107% 6.18x107¢ 8.11x10°° 399x107¢% 8.11x10¢
50 v/ 6.37x107° 637x10°° 6.40x10°° 999%x10°® 1.13x10°° 7.57x10°%

Eigenvector disjunctions improve relative gap by order of magnitude
Alternating minimization exhibits similar improvement
Best-first search better than breadth-first or depth-first search



Experiment I: Justifying Algorithmic Design Decisions

Aside:

Commercial non-convex solvers typically use
McCormick relaxations (spatial branching), not
eigenvector disjunctions

Our results+related results in Anstreicher (2022)
suggest commercial solvers may benefit from

eigenvector disjunctions when solving non-
convex (MI)QCPs

Please implement this &

With McCormick disjunctions

With eigenvector disjunctions

A.lt.e rr.latlflg Best-first Breadth-first Depth-first Best-first Breadth-first Depth-first

minimization
10 X 237x1072 3.06x1072 5.02x10"2 528x10~2 1.10x10"2 2.60x 102
10 v/ 320x107¢ 490x107¢ 7.92x107° 293x10°* 491x107* 522x10°°
20 X 478 x1073 478 x10~2 4.78x10~% 261x10~% 4.03x10¢% 4.03x10°3
20 o 551x107¢ 801x107% 801x107% 132x107% 192x107% 6.37x107¢
30 X 1.77x1072 1.77x1072 1.77x1072 2.00x10"% 4.16x10"% 1.35x10°2
30 v/ 201x107% 313x107% 3.13x10°° 282x107% 453x107% 198x10°°
40 X 1.32x10~% 1.32x10~° 132x10~2 328x10°¢% 7.12x107¢% 6.11x10°¢
40 v/ 1.12x10¢ 1.12x10¢ 1.12x10¢ 157x105% 1.94x10°5 825x10°5
50 X 6.18x107% 6.18x107% 6.18x107¢ 8.11x10°° 399x107¢% 8.11x10¢
50 v/ 6.37x107° 637x10°° 6.40x10°° 999%x10°® 1.13x10°° 7.57x10°%

Eigenvector disjunctions improve relative gap by order of magnitude
Alternating minimization exhibits similar improvement
Best-first search better than breadth-first or depth-first search
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Root node relative gap

Relative gap

0.04 0.04 s 150
0.4
0.04 0.05 A 125
° el 3 05 005 006 O. 100 0.3
Experiment Il: Scalability | ~.
' 01 007 008 008 O. 75 0.2
Problem Setting 051 0. 7 0.1
02 0.16 30 :
Recover low-rank nxn rank-k matrix o‘fss 31; fg

0.0

1 2 3 + 5

* Using best method in Experiment |
« Sample p = 2nk log n entries at random

* Varyn, k
* Measure average optimality gap at root S
node, after one hour over 50 instances X
+  Measure average MSE improvement g
compared to Burer-Monteiro §
S 50
£
w
%3]
s 25
Surprisingly large MSE improvement from branch-and-bound! ot

Although edge decreases as n,k increases.
* many local minima and branch-and-bound needed when n,k small
* but few local minima, existing methods work well when n,k large



Do Local Methods Solve Matrix Completion to Optimality?

Many Positive Results in Literature

Deterministic guarantees for Burer—Monteiro
factorizations of smooth semidefinite programs

NICOLAS BOUMAL

Mathematics Department and Program in Applied and Computational Mathematics,

Princeton University

VLADISLAV VORONINSKI

Helm.ai
AND
AFONSO S. BANDEIRA

Department of Mathematics and Center for Data Science,
Courant Institute of Mathematical Sciences, New York University

Rank optimality for the Burer-Monteiro ON THE BURER-MONTEIRO METHOD
. FOR GENERAL SEMIDEFINITE PROGRAMS
factorization

DIEGO CIFUENTES
Iréne Waldspurger* Alden Waterst

Literature says: Given *enough* data, Burer-Monteiro solves low-rank matrix completion to optimality! £
« BMis very fast! So, if assumptions on *enough* data hold, you should use it

But... Assumptions on *enough* data may not hold!

*  Our results add: When they don't, there are often many local optima, and global methods are needed



Why Do Exact Methods Perform Better?

The Literature Does Not Rule Out The Possibility of an “Overlap Gap”

nrlogn

Candes, Recht (2009)
No method can succeed

(exhaustive search fails)
» No. obs of n

Candes, Recht (2009) X n matrix

Nuclear Norm Relaxation Succeeds

n>/*r logn

Previous slide confirms empirically:
branch-and-bound better in practice



Recover low-rank nxn rank-1 matrix

Experiment lll: Comparison of Convex Relaxations

[ No minors
M

I
[ M, and M, (half)
0 M, and My

Vary nin 10, 20, 30, ..., 75, 100

Impose described Shor constraints on a
subset of determinant minors,
depending on no. observed entries

Relative gap, log
=
o

Imposing M_4 and M_3 minors reduces 10 10 20 30 50 75 100
. . Size (n)
optimality gap by 1-2 orders of .
. . 10
magnitude, depending on problem B o rinor
setting - =Mj and A, (half)
== M, and M,

Time (s), log

10 20 30 . 50 75 100
Size (n)



Summary: A Tale of Two Problems

Low-Rank Matrix Completion Sparse Linear Regression

=

Parsimony rank Parsimony sparsity
Modeling constraint X=YX Modeling constraint x = zx (x = 0 if z = 0)

Non-convex set Y2 =Y (Y projection matrix) Non-convex set z? = z (z binary)

a

Root node matrix perspective relaxation Root node perspective relaxation
Branching eigenvectors Branching 0-1 (strong)
Incumbent alternating minimization Incumbent coordinate descent

|

Main contribution of talk: Build bridge from MIO to rank constraints, leverage
MIO marketplace of ideas to solve low-rank matrix completion via branch-and-bound
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Experiment |: Backup-Average Runtime

With McCormick disjunctions With eigenvector disjunctions

Problem Setting

Alternating

. nimizati Best-first Breadth-first Depth-first Best-first Breadth-first Depth-first
Recover low-rank nxn rank-1 matrix: TIIRIMIZatlon
° Generate synthetic nxn rank_1 matrices 10 X 6.43 x 102 6.76 x 102 6.94 x 102 3.10 x 102 4.13 x 102 8.60 x 102
. .. . 10 1.40 x 10> 1.36 x 10> 5.70x 10> 6.37x 10" 1.04x 10>  3.98 x 102
* Inject small amount of i.i.d. noise
. 2 2 + 2 2 y 2 2
20 v 2.06 x 10 2.28 x 10 2.37x 102 5.88x 10 9.17 x 10 2.63 x 10
* Vary n, branch-and-bound strategy - - - - - -
. . . 30 X 3.49 x 10 3.49 x 10 3.46 x 10 1.99 x 10 2.24 x 10 3.38 x 10
° Measure average relative optlmahty 9ap 30 v 0.21 x 102 9.04x10%> 9.28x10%> 3.07x10®> 3.35x10® 8.86x 10?
after one hour - - - . - -
. T nat v if £10M-4 40 X 7.62 % 10 7.62 x 10 7.66 x 102 1.83 x 10 2.10 x 10 7.25 % 10
erminate early 11 gap o - 40 v 514%x 102 5.08x102 519x102 819x10' 9.53x10'  4.99 x 102
50 X 6.51 x 10>  6.47x10° 6.45x10%° 3.18x10®> 4.56x10®>  6.31 x 10>
50 v 3.22%x10%2 326x10%2 3.26x10° 1.08x10%2 1.47x10®>  4.35x 10>

Eigenvector disjunctions improve relative gap by order of magnitude

Alternating minimization exhibits similar improvement

Best-first search better than breadth-first or depth-first search
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| What does MPCO (not) generalize from MIO?

MIO captures notions of

* Finiteness: z € {0, 1}

« Algebraicity: z2—z=0

While MPCO captures notions of algebraicity (Y2 = Y) but NOT finiteness-uncountably infinitely many Y

Therefore [what follows is conjecture]

* Results from MIO which depend on algebraic arguments (perspective reformulation, taking convex hulls)

« Or where enumeration argument can be replaced with coverage argument (branch-and-bound/cut)
Generalize from MIO. But..

* Results in MIO which depend on discreteness (e.g., MIR cuts) probably do not

Therefore, QCQP cuts (split cuts, PSD cuts) can be used by MPCO, but MIO cuts (Knapsack/flow cover) cannot

Remark: determining whether MIO result due to finiteness is non-trivial
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